P-unit_model/DataParserFactory.py

332 lines
12 KiB
Python

from os.path import isdir, exists
from warnings import warn
import pyrelacs.DataLoader as Dl
from models.AbstractModel import AbstractModel
UNKNOWN = -1
DAT_FORMAT = 0
NIX_FORMAT = 1
MODEL = 2
class AbstractParser:
def cell_get_metadata(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_baseline_traces(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_fi_curve_traces(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_fi_curve_spiketimes(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_fi_frequency_traces(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_sampling_interval(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_recording_times(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def traces_available(self) -> bool:
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def spiketimes_available(self) -> bool:
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def frequencies_available(self) -> bool:
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
class DatParser(AbstractParser):
def __init__(self, dir_path):
self.base_path = dir_path
self.fi_file = self.base_path + "/fispikes1.dat"
self.stimuli_file = self.base_path + "/stimuli.dat"
self.__test_data_file_existence__()
self.fi_recording_times = []
self.sampling_interval = -1
def traces_available(self) -> bool:
return True
def frequencies_available(self) -> bool:
return False
def spiketimes_available(self) -> bool:
return True
def cell_get_metadata(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_sampling_interval(self):
if self.sampling_interval == -1:
self.__read_sampling_interval__()
return self.sampling_interval
def get_recording_times(self):
if len(self.fi_recording_times) == 0:
self.__read_fi_recording_times__()
return self.fi_recording_times
def get_baseline_traces(self):
return self.__get_traces__("BaselineActivity")
def get_fi_curve_traces(self):
return self.__get_traces__("FICurve")
def get_fi_frequency_traces(self):
raise NotImplementedError("Not possible in .dat data type.\n"
"Please check availability with the x_available functions.")
# TODO clean up/ rewrite
def get_fi_curve_spiketimes(self):
spiketimes = []
pre_intensities = []
pre_durations = []
intensities = []
trans_amplitudes = []
pre_duration = -1
index = -1
skip = False
trans_amplitude = float('nan')
for metadata, key, data in Dl.iload(self.fi_file):
if len(metadata) != 0:
metadata_index = 0
if '----- Control --------------------------------------------------------' in metadata[0].keys():
metadata_index = 1
pre_duration = float(metadata[0]["----- Pre-Intensities ------------------------------------------------"]["preduration"][:-2])
trans_amplitude = float(metadata[0]["trans. amplitude"][:-2])
if pre_duration == 0:
skip = False
else:
skip = True
continue
if skip:
continue
intensity = float(metadata[metadata_index]['intensity'][:-2])
pre_intensity = float(metadata[metadata_index]['preintensity'][:-2])
intensities.append(intensity)
pre_durations.append(pre_duration)
pre_intensities.append(pre_intensity)
trans_amplitudes.append(trans_amplitude)
spiketimes.append([])
index += 1
if skip:
continue
if data.shape[1] != 1:
raise RuntimeError("DatParser:get_fi_curve_spiketimes():\n read data has more than one dimension!")
spike_time_data = data[:, 0]/1000
if len(spike_time_data) < 10:
continue
if spike_time_data[-1] < 1:
print("# ignoring spike-train that ends before one second.")
continue
spiketimes[index].append(spike_time_data)
# TODO add merging for similar intensities? hf.merge_similar_intensities() + trans_amplitudes
return trans_amplitudes, intensities, spiketimes
def __get_traces__(self, repro):
time_traces = []
v1_traces = []
eod_traces = []
local_eod_traces = []
stimulus_traces = []
nothing = True
for info, key, time, x in Dl.iload_traces(self.base_path, repro=repro):
nothing = False
time_traces.append(time)
v1_traces.append(x[0])
eod_traces.append(x[1])
local_eod_traces.append(x[2])
stimulus_traces.append(x[3])
traces = [time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces]
if nothing:
warn_msg = "pyrelacs: iload_traces found nothing for the " + str(repro) + " repro!"
warn(warn_msg)
return traces
def __read_fi_recording_times__(self):
delays = []
stim_duration = []
pause = []
for metadata, key, data in Dl.iload(self.fi_file):
if len(metadata) != 0:
control_key = '----- Control --------------------------------------------------------'
if control_key in metadata[0].keys():
delays.append(float(metadata[0][control_key]["delay"][:-2])/1000)
pause.append(float(metadata[0][control_key]["pause"][:-2])/1000)
stim_key = "----- Test-Intensities -----------------------------------------------"
stim_duration.append(float(metadata[0][stim_key]["duration"][:-2])/1000)
for l in [delays, stim_duration, pause]:
if len(l) == 0:
raise RuntimeError("DatParser:__read_fi_recording_times__:\n" +
"Couldn't find any delay, stimulus duration and or pause in the metadata.\n" +
"In file:" + self.base_path)
elif len(set(l)) != 1:
raise RuntimeError("DatParser:__read_fi_recording_times__:\n" +
"Found multiple different delay, stimulus duration and or pause in the metadata.\n" +
"In file:" + self.base_path)
else:
self.fi_recording_times = [-delays[0], 0, stim_duration[0], pause[0] - delays[0]]
def __read_sampling_interval__(self):
stop = False
sampling_intervals = []
for metadata, key, data in Dl.iload(self.stimuli_file):
for md in metadata:
for i in range(4):
key = "sample interval" + str(i+1)
if key in md.keys():
sampling_intervals.append(float(md[key][:-2]) / 1000)
stop = True
else:
break
if stop:
break
if len(sampling_intervals) == 0:
raise RuntimeError("DatParser:__read_sampling_interval__:\n" +
"Sampling intervals not found in stimuli.dat this is not handled!\n" +
"with File:" + self.base_path)
if len(set(sampling_intervals)) != 1:
raise RuntimeError("DatParser:__read_sampling_interval__:\n" +
"Sampling intervals not the same for all traces this is not handled!\n" +
"with File:" + self.base_path)
else:
self.sampling_interval = sampling_intervals[0]
def __test_data_file_existence__(self):
if not exists(self.stimuli_file):
raise RuntimeError(self.stimuli_file + " file doesn't exist!")
if not exists(self.fi_file):
raise RuntimeError(self.fi_file + " file doesn't exist!")
# MODEL PARSER: ------------------------------
class ModelParser(AbstractParser):
def __init__(self, model: AbstractModel):
self.model = model
def cell_get_metadata(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_baseline_traces(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_fi_curve_traces(self):
if not self.model.simulates_voltage_trace():
raise NotImplementedError("Model doesn't simulated voltage traces!")
traces = []
for stimulus in self.model.get_stimuli_for_fi_curve():
self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve)
traces.append(self.model.get_voltage_trace())
return traces
def get_fi_curve_spiketimes(self):
if not self.model.simulates_spiketimes():
raise NotImplementedError("Model doesn't simulated spiketimes!")
all_spiketimes = []
for stimulus in self.model.get_stimuli_for_fi_curve():
self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve)
all_spiketimes.append(self.model.get_spiketimes())
return all_spiketimes
def get_fi_frequency_traces(self):
if not self.model.simulates_frequency():
raise NotImplementedError("Model doesn't simulated frequency!")
frequency_traces = []
for stimulus in self.model.get_stimuli_for_fi_curve():
self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve)
frequency_traces.append(self.model.get_frequency())
return frequency_traces
def get_sampling_interval(self):
self.model.get_sampling_interval()
def get_recording_times(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def traces_available(self) -> bool:
return self.model.simulates_voltage_trace()
def spiketimes_available(self) -> bool:
return self.model.simulates_spiketimes()
def frequencies_available(self) -> bool:
return self.model.simulates_frequency()
# TODO ####################################
class NixParser(AbstractParser):
def __init__(self, nix_file_path):
self.file_path = nix_file_path
warn("NIX PARSER: NOT YET IMPLEMENTED!")
# TODO ####################################
def get_parser(data_path) -> AbstractParser:
data_format = __test_for_format__(data_path)
if data_format == DAT_FORMAT:
return DatParser(data_path)
elif data_format == NIX_FORMAT:
return NixParser(data_path)
elif data_format == MODEL:
return ModelParser(data_path)
elif data_format == UNKNOWN:
raise TypeError("DataParserFactory:get_parser(data_path):\nCannot determine type of data for:" + data_path)
def __test_for_format__(data_path):
if isinstance(data_path, AbstractModel):
return MODEL
if isdir(data_path):
if exists(data_path + "/fispikes1.dat"):
return DAT_FORMAT
elif data_path.endswith(".nix"):
return NIX_FORMAT
else:
return UNKNOWN