P-unit_model/thesis/sources/notes/notes.tex
2020-08-15 17:16:39 +02:00

145 lines
4.5 KiB
TeX
Executable File

\documentclass[12pt,a4paper,pdftex]{article}
\usepackage[left=25mm, right=25mm, top=20mm, bottom=25mm]{geometry}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{natbib}
\usepackage[breaklinks=true,bookmarks=true,bookmarksopen=true,pdfpagemode=UseNone,pdfstartview=FitH,colorlinks=false,citecolor=blue]{hyperref}
\usepackage[utf8x]{inputenc}
\usepackage[english]{babel}
%\usepackage{float}
\usepackage{floatrow}
\usepackage{listings} % für den code am Ende
\newcommand{\todo}[1]{{(\color{red} TODO: #1) }}
\newcommand{\AptLepto}{{\textit{Apteronotus leptorhynchus}}}
\newcommand{\lepto}{{\textit{A. leptorhynchus}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Ab hier beginnt der eigentliche Text:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\section{To-read}
\begin{itemize}
\item other models/papers to P-units:
Bastian 1981a Electrolocation I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli
%Benda and Herz 2003
\cite{benda2003universal}
%Benda et al. 2005, 2006
%Chacron et al 2001, 2005a
%Kreiman et al. 2000
%Ludtke and Nelson 2006
%Nelson et al. 1997
%Ratman and Nelson 2000
%Wessel et al 1996
%Xu et al 1996
\end{itemize}
\section{Introduction}
\subsection{Apteronotus leptorynchus}
\begin{itemize}
\item to mention: size range, tank conditions,
\item continuous sinusoidal electric organ discharge EOD with near constant amplitude and frequency (Moortgat et al. 1998)
\item EOD carrier signal for AMs caused by nearby objects like prey or other electric fish
\end{itemize}
\subsection{general P-unit notes}
\begin{itemize}
\item consist of 25-40 receptor cells and a nerve fiber that makes synaptic contact to at least 16 active neurotransmitter release sites per receptor cell. (M.V.L. Bennett, C. Sandri, K. Akert, Fine Structure of the tuberous electroreceptor of the high-frequency electric "sh Sternachus albifrons (gymnotiformes), J. Neurocytol. 18 (1989) 265.)
\item most abundant tuberous receptor
\item spikes in probabilistic manner to upward phase of eod
\item important characterization P-value probability of spiking per EOD cycle estimated as p-unit frequency divided by eod frequency typical values 0.1-0.6 (Bastian 1981a, Xu et al 1997)
\item rapidly adapting (Benda et al 2005, Xu et al. 1996) often studied with SAMs or RAMs
\item can predict up to 80\% of the AM using reverse correlation and coherence but no obvious decoding mechanism
\item linear coders of intensity, additive noise models are suitable Gussin et al. 2007
\end{itemize}
\subsection{Coding}
\subsection{nerve recordings}
\begin{itemize}
\item sample descriptions in: Hernriettes phd, Gussin et al. 2007, Benda et al. 2005
\end{itemize}
\section{Mat\&Met}
\subsection{model construction}
\begin{itemize}
\item explain why adaption current and not a dynamic threshold: chosen AC other possibilities(dyn. thresh. voltage hyperpol.) why AC is better.
\end{itemize}
\section{Paper}
\subsection{Limits of linear rate coding of dynamic stimuli by electroreceptor afferents}
Daniel Gussin, Jan Benda, Leonard Maler, 2007, J neurophysiol
P-units may code for the intensity and slope of the stimulus and if the higher neuronal structures can separate these two parts they can detect the very weak signals they use in their behavior.
\subsubsection{Introduction}
\begin{itemize}
\item {definition of neural code needs map between external signal and resulting spike trains AND demonstration that downstream neural circuits can interpret this mapping and therefore direct behavioral output.
original code often assumed to be linear rate coding needs only temporal summation over some time window to decode}
linear code breaks down for dynamic signals and neurons with time-dependent conductances (adapting currents)!
then more sophisticated methods like spike-triggered stimulus averages (STA) are used to estimate the linear encoding of signals but no obvious decoding mechanisms are implied.
\end{itemize}
\subsection{Simple models of bursting and non-bursting P-type electroreceptors}
Maurice J. Chacron, Andre H Longtin , Leonard Maler, 2001
\begin{itemize}
\item simple math. model of P-units for just the baseline behavior.
\item uses dynamic threshold, abs refractory period, for bursty cells added a delayed depolarization current
\item wasn't "fitted" to data just compared, chosen and fixed(?) parameters
\end{itemize}
\bibliography{../../citations}
\bibliographystyle{apalike}
\end{document}