P-unit_model/helperFunctions.py
2020-05-10 13:55:48 +02:00

488 lines
16 KiB
Python

import numpy as np
from warnings import warn
from thunderfish.eventdetection import detect_peaks, threshold_crossing_times, threshold_crossings
from scipy.optimize import curve_fit
import functions as fu
from numba import jit
def fit_clipped_line(x, y):
popt, pcov = curve_fit(fu.clipped_line, x, y)
return popt
def fit_boltzmann(x, y):
max_f0 = float(max(y))
min_f0 = 0.1 # float(min(self.f_zeros))
mean_int = float(np.mean(x))
total_increase = max_f0 - min_f0
total_change_int = max(x) - min(x)
start_k = float((total_increase / total_change_int * 4) / max_f0)
popt, pcov = curve_fit(fu.full_boltzmann, x, y,
p0=(max_f0, min_f0, start_k, mean_int),
maxfev=10000, bounds=([0, 0, -np.inf, -np.inf], [np.inf, np.inf, np.inf, np.inf]))
return popt
@jit(nopython=True)
def rectify_stimulus_array(stimulus_array: np.ndarray):
return np.array([x if x > 0 else 0 for x in stimulus_array])
def merge_similar_intensities(intensities, spiketimes, trans_amplitudes):
i = 0
diffs = np.diff(sorted(intensities))
margin = np.mean(diffs) * 0.6666
while True:
if i >= len(intensities):
break
intensities, spiketimes, trans_amplitudes = merge_intensities_similar_to_index(intensities, spiketimes, trans_amplitudes, i, margin)
i += 1
# Sort the lists so that intensities are increasing
x = [list(x) for x in zip(*sorted(zip(intensities, spiketimes), key=lambda pair: pair[0]))]
intensities = x[0]
spiketimes = x[1]
return intensities, spiketimes, trans_amplitudes
def merge_intensities_similar_to_index(intensities, spiketimes, trans_amplitudes, index, margin):
intensity = intensities[index]
indices_to_merge = []
for i in range(index+1, len(intensities)):
if np.abs(intensities[i]-intensity) < margin:
indices_to_merge.append(i)
if len(indices_to_merge) != 0:
indices_to_merge.reverse()
trans_amplitude_values = [trans_amplitudes[k] for k in indices_to_merge]
all_the_same = True
for j in range(1, len(trans_amplitude_values)):
if not trans_amplitude_values[0] == trans_amplitude_values[j]:
all_the_same = False
break
if all_the_same:
for idx in indices_to_merge:
del trans_amplitudes[idx]
else:
raise RuntimeError("Trans_amplitudes not the same....")
for idx in indices_to_merge:
spiketimes[index].extend(spiketimes[idx])
del spiketimes[idx]
del intensities[idx]
return intensities, spiketimes, trans_amplitudes
def all_calculate_mean_isi_frequency_traces(spiketimes, sampling_interval, stimulus_start=0, time_in_ms=False):
"""
Expects spiketimes to be a 3dim list with the first dimension being the trial
the second the count of runs of spikes and the last the individual spikes_times:
[[[trial1-run1-spike1, trial1-run1-spike2, ...],[trial1-run2-spike1, ...]],[[trial2-run1-spike1, ...], [..]]]
:param stimulus_start: the time point at which the actual stimulus starts
:param spiketimes: time points of action potentials
:param sampling_interval: the sampling interval used / will also be used for the frequency trace
:param time_in_ms: whether the time is in ms or seconds
:return: the mean frequency trace for each trial and its time trace
"""
times = []
mean_frequencies = []
for i in range(len(spiketimes)):
trial_time_trace = []
trial_freq_trace = []
for j in range(len(spiketimes[i])):
time, isi_freq = calculate_time_and_frequency_trace(spiketimes[i][j], sampling_interval, time_in_ms)
if time[0] > stimulus_start:
print("Trial not used as its frequency trace started after the stimulus start!")
continue
trial_freq_trace.append(isi_freq)
trial_time_trace.append(time)
time, mean_freq = calculate_mean_of_frequency_traces(trial_time_trace, trial_freq_trace, sampling_interval)
times.append(time)
mean_frequencies.append(mean_freq)
return times, mean_frequencies
def calculate_isi_frequency_trace(spiketimes, sampling_interval, time_in_ms=False):
"""
Calculates the frequency over time according to the inter spike intervals.
:param spiketimes: sorted time points spikes were measured array_like
:param sampling_interval: the sampling interval in which the frequency should be given back
:param time_in_ms: whether the time is in ms or in s for BOTH the spiketimes and the sampling interval
:return: an np.array with the isi frequency starting at the time of first spike and ending at the time of the last spike
"""
if len(spiketimes) <= 1:
return []
isis = np.diff(spiketimes)
if sampling_interval > round(min(isis), 7):
raise ValueError("The sampling interval is bigger than the some isis! cannot accurately compute the trace.\n"
"Sampling interval {:.5f}, smallest isi: {:.5f}".format(sampling_interval, min(isis)))
if time_in_ms:
isis = isis / 1000
sampling_interval = sampling_interval / 1000
full_frequency = np.array([])
for isi in isis:
if isi < 0:
raise ValueError("There was a negative interspike interval, the spiketimes need to be sorted")
if isi == 0:
warn("An ISI was zero in FiCurve:__calculate_mean_isi_frequency__()")
print("ISI was zero:", spiketimes)
continue
freq = 1 / isi
frequency_step = np.full(int(round(isi * (1 / sampling_interval))), freq)
full_frequency = np.concatenate((full_frequency, frequency_step))
return full_frequency
def calculate_time_and_frequency_trace(spiketimes, sampling_interval, time_in_ms=False):
if len(spiketimes) < 2:
return [0], [0]
# raise ValueError("Cannot compute a time and frequency vector with fewer than 2 spikes")
frequency = calculate_isi_frequency_trace(spiketimes, sampling_interval, time_in_ms)
time = np.arange(spiketimes[0], spiketimes[-1], sampling_interval)
if len(time) != len(frequency):
if len(time) > len(frequency):
time = time[:len(frequency)]
return time, frequency
def calculate_mean_of_frequency_traces(trial_time_traces, trial_frequency_traces, sampling_interval):
"""
calculates the mean_trace of the given frequency traces -> mean at each time point
for traces starting at different times
:param trial_time_traces:
:param trial_frequency_traces:
:param sampling_interval:
:return:
"""
ends = [t[-1] for t in trial_time_traces]
starts = [t[0] for t in trial_time_traces]
latest_start = max(starts)
earliest_end = min(ends)
shortened_time = np.arange(latest_start, earliest_end, sampling_interval)
shortened_freqs = []
for i in range(len(trial_frequency_traces)):
start_idx = int(round((latest_start - trial_time_traces[i][0]) / sampling_interval))
end_idx = int(round((earliest_end - trial_time_traces[i][0]) / sampling_interval))
shortened_freqs.append(trial_frequency_traces[i][start_idx:end_idx])
mean_freq = [sum(e) / len(e) for e in zip(*shortened_freqs)]
return shortened_time, mean_freq
def mean_freq_of_spiketimes_after_time_x(spiketimes, time_x, time_in_ms=False):
""" Calculates the mean frequency of the portion of spiketimes that is after last_x_time """
spiketimes = np.array(spiketimes)
if len(spiketimes) <= 1:
return 0
relevant_spikes = spiketimes[spiketimes > time_x]
if len(relevant_spikes) <= 1:
return 0
if time_in_ms:
relevant_spikes = relevant_spikes / 1000
isis = np.diff(relevant_spikes)
isi_freqs = 1 / isis
weights = isis / min(isis)
mean_freq = sum(isi_freqs * weights) / sum(weights)
return mean_freq
# freq = calculate_isi_frequency_trace(spiketimes, sampling_interval, time_in_ms)
# # returned frequency starts at the
# idx = int((time_x-spiketimes[0]) / sampling_interval)
# rest_array = freq[idx:]
# mean_freq = np.mean(rest_array)
# return mean_freq
def calculate_mean_isi_freq(spiketimes, time_in_ms=False):
if len(spiketimes) < 2:
return 0
isis = np.diff(spiketimes)
if time_in_ms:
isis = isis / 1000
freqs = 1 / isis
weights = isis / np.min(isis)
return sum(freqs * weights) / sum(weights)
# @jit(nopython=True) # only faster at around 30 000 calls
def calculate_coefficient_of_variation(spiketimes: np.ndarray) -> float:
# CV (stddev of ISI divided by mean ISI (np.diff(spiketimes))
isi = np.diff(spiketimes)
std = np.std(isi)
mean = np.mean(isi)
return std/mean
# @jit(nopython=True) # maybe faster with more than ~60 000 calls
def calculate_serial_correlation(spiketimes: np.ndarray, max_lag: int) -> np.ndarray:
isi = np.diff(spiketimes)
if len(spiketimes) < max_lag + 1:
raise ValueError("Given list to short, with given max_lag")
cor = np.zeros(max_lag)
for lag in range(max_lag):
lag = lag + 1
first = isi[:-lag]
second = isi[lag:]
cor[lag-1] = np.corrcoef(first, second)[0][1]
return cor
def calculate_eod_frequency(time, eod):
# TODO for few samples very volatile measure!
up_indicies, down_indicies = threshold_crossings(eod, 0)
up_times, down_times = threshold_crossing_times(time, eod, 0, up_indicies, down_indicies)
if len(up_times) == 0:
return 0
durations = np.diff(up_times)
mean_duration = np.mean(durations)
return 1/mean_duration
def calculate_vector_strength_from_v1_trace(times, eods, v1_traces):
# Vectorstaerke (use EOD frequency from header (metadata)) VS > 0.8
# dl.iload_traces(repro='BaselineActivity')
relative_spike_times = []
eod_durations = []
if len(times) == 0:
print("-----LENGTH OF TIMES = 0")
for recording in range(len(times)):
spiketime_idices = detect_spikes(v1_traces[recording])
rel_spikes, eod_durs = eods_around_spikes(times[recording], eods[recording], spiketime_idices)
relative_spike_times.extend(rel_spikes)
eod_durations.extend(eod_durs)
# print(__vector_strength__(np.array(rel_spikes), np.array(eod_durs)))
relative_spike_times = np.array(relative_spike_times)
eod_durations = np.array(eod_durations)
return __vector_strength__(relative_spike_times, eod_durations)
def calculate_vector_strength_from_spiketimes(time, eod, spiketimes, sampling_interval):
spiketime_indices = np.array(np.around((np.array(spiketimes) + time[0]) / sampling_interval), dtype=int)
rel_spikes, eod_durs = eods_around_spikes(time, eod, spiketime_indices)
return __vector_strength__(rel_spikes, eod_durs)
def detect_spikes(v1, split=20, threshold=3):
total = len(v1)
all_peaks = []
for n in range(split):
length = int(total / split)
first_index = n * length
last_index = (n + 1) * length
std = np.std(v1[first_index:last_index])
peaks, _ = detect_peaks(v1[first_index:last_index], std * threshold)
peaks = peaks + first_index
all_peaks.extend(peaks)
all_peaks = np.array(all_peaks)
return all_peaks
def calculate_phases(relative_spike_times, eod_durations):
phase_times = np.zeros(len(relative_spike_times))
for i in range(len(relative_spike_times)):
phase_times[i] = (relative_spike_times[i] / eod_durations[i]) * 2 * np.pi
return phase_times
def eods_around_spikes(time, eod, spiketime_idices):
eod_durations = []
relative_spike_times = []
sign_changes = np.sign(eod[:-1]) != np.sign(eod[1:])
eod_trace_increasing = eod[:-1] < eod[1:]
eod_zero_crossings_indices = np.where(sign_changes & eod_trace_increasing)[0]
for spike_idx in spiketime_idices:
# test if it is inside two detected crossings
if eod_zero_crossings_indices[0] > spike_idx > eod_zero_crossings_indices[-1]:
continue
zero_crossing_index_of_eod_end = np.argmax(eod_zero_crossings_indices > spike_idx)
end_time_idx = eod_zero_crossings_indices[zero_crossing_index_of_eod_end]
start_time_idx = eod_zero_crossings_indices[zero_crossing_index_of_eod_end - 1]
eod_durations.append(time[end_time_idx] - time[start_time_idx])
relative_spike_times.append(time[spike_idx] - time[start_time_idx])
# try:
# start_time, end_time = search_eod_start_and_end_times(time, eod, spike_idx)
#
# eod_durations.append(end_time-start_time)
# spiketime = time[spike_idx]
# relative_spike_times.append(spiketime - start_time)
# except IndexError as e:
# continue
return np.array(relative_spike_times), np.array(eod_durations)
def search_eod_start_and_end_times(time, eod, index):
# TODO might break if a spike is in the cut off first or last eod!
# search start_time:
previous = index
working_idx = index-1
while True:
if eod[working_idx] < 0 < eod[previous]:
first_value = eod[working_idx]
second_value = eod[previous]
dif = second_value - first_value
part = np.abs(first_value/dif)
time_dif = np.abs(time[previous] - time[working_idx])
start_time = time[working_idx] + time_dif*part
break
previous = working_idx
working_idx -= 1
# search end_time
previous = index
working_idx = index + 1
while True:
if eod[previous] < 0 < eod[working_idx]:
first_value = eod[previous]
second_value = eod[working_idx]
dif = second_value - first_value
part = np.abs(first_value / dif)
time_dif = np.abs(time[previous] - time[working_idx])
end_time = time[working_idx] + time_dif * part
break
previous = working_idx
working_idx += 1
return start_time, end_time
def __vector_strength__(relative_spike_times: np.ndarray, eod_durations: np.ndarray):
# adapted from Ramona
n = len(relative_spike_times)
if n == 0:
return -1
phase_times = (relative_spike_times / eod_durations) * 2 * np.pi
vs = np.sqrt((1 / n * np.sum(np.cos(phase_times))) ** 2 + (1 / n * np.sum(np.sin(phase_times))) ** 2)
return vs
def detect_f_zero_in_frequency_trace(time, frequency, stimulus_start, sampling_interval, peak_buffer_percent=0.05, buffer=0.025):
stimulus_start = stimulus_start - time[0] # time start is generally != 0 and != delay
freq_before = frequency[int(buffer/sampling_interval):int((stimulus_start - buffer) / sampling_interval)]
if len(freq_before) < 3:
print("mäh")
return 0
min_before = min(freq_before)
max_before = max(freq_before)
mean_before = np.mean(freq_before)
# time where the f-zero is searched in
start_idx = int((stimulus_start-0.1*buffer) / sampling_interval)
end_idx = int((stimulus_start + buffer) / sampling_interval)
min_during_start_of_stim = min(frequency[start_idx:end_idx])
max_during_start_of_stim = max(frequency[start_idx:end_idx])
if abs(mean_before-min_during_start_of_stim) > abs(max_during_start_of_stim-mean_before):
f_zero = min_during_start_of_stim
else:
f_zero = max_during_start_of_stim
peak_buffer = (max_before - min_before) * peak_buffer_percent
if min_before - peak_buffer <= f_zero <= max_before + peak_buffer:
end_idx = start_idx + int((end_idx-start_idx)/2)
f_zero = np.mean(frequency[start_idx:end_idx])
# import matplotlib.pyplot as plt
# plt.plot(time, frequency)
# plt.plot(time[start_idx:end_idx], [f_zero for i in range(end_idx-start_idx)])
# plt.show()
return f_zero
def detect_f_infinity_in_freq_trace(time, frequency, stimulus_start, stimulus_duration, sampling_interval, length=0.1, buffer=0.025):
stimulus_end_time = stimulus_start + stimulus_duration - time[0]
start_idx = int((stimulus_end_time - length - buffer) / sampling_interval)
end_idx = int((stimulus_end_time - buffer) / sampling_interval)
return np.mean(frequency[start_idx:end_idx])
def detect_f_baseline_in_freq_trace(time, frequency, stimulus_start, sampling_interval, buffer=0.025):
stim_start = stimulus_start - time[0]
if stim_start < 0.1:
warn("FICurve:__calculate_f_baseline__(): Quite short delay at the start.")
start_idx = int(buffer/sampling_interval)
end_idx = int((stim_start-buffer)/sampling_interval)
f_baseline = np.mean(frequency[start_idx:end_idx])
return f_baseline