P-unit_model/Fitter.py
2020-05-10 13:55:48 +02:00

557 lines
25 KiB
Python

from models.LIFACnoise import LifacNoiseModel
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
from CellData import CellData, icelldata_of_dir
from FiCurve import FICurve
from AdaptionCurrent import Adaption
import helperFunctions as hF
import functions as fu
import numpy as np
from scipy.optimize import minimize
import time
import os
SAVE_PATH_PREFIX = ""
def main():
run_with_real_data()
def iget_start_parameters(mem_tau_list=None, input_scaling_list=None, noise_strength_list=None, dend_tau_list=None, tau_a_list=None, delta_a_list=None):
# mem_tau, input_scaling, noise_strength, dend_tau,
# expand by tau_a, delta_a ?
if mem_tau_list is None:
mem_tau_list = [0.01]
if input_scaling_list is None:
input_scaling_list = [40, 60, 80]
if noise_strength_list is None:
noise_strength_list = [0.03] # [0.02, 0.06]
if dend_tau_list is None:
dend_tau_list = [0.001, 0.002]
# if tau_a_list is None:
# tau_a_list =
# if delta_a_list is None:
# delta_a_list =
for mem_tau in mem_tau_list:
for input_scaling in input_scaling_list:
for noise_strength in noise_strength_list:
for dend_tau in dend_tau_list:
yield {"mem_tau": mem_tau, "input_scaling": input_scaling,
"noise_strength": noise_strength, "dend_tau": dend_tau}
def run_with_real_data():
for cell_data in icelldata_of_dir("./data/"):
start_par_count = 0
for start_parameters in iget_start_parameters():
start_par_count += 1
print("START PARAMETERS:", start_par_count)
if start_par_count <= 0:
continue
print("cell:", cell_data.get_data_path())
trace = cell_data.get_base_traces(trace_type=cell_data.V1)
if len(trace) == 0:
print("NO V1 TRACE FOUND")
continue
results_path = "results/" + os.path.split(cell_data.get_data_path())[-1] + "/"
print("results at:", results_path)
start_time = time.time()
fitter = Fitter()
fmin, parameters = fitter.fit_model_to_data(cell_data, start_parameters)
print(fmin)
print(parameters)
end_time = time.time()
if not os.path.exists(results_path):
os.makedirs(results_path)
with open(results_path + "fit_parameters_start_{}.txt".format(start_par_count), "w") as file:
file.writelines(["start_parameters:\t" + str(start_parameters),
"final_parameters:\t" + str(parameters),
"final_fmin:\t" + str(fmin)])
results_path += SAVE_PATH_PREFIX + "par_set_" + str(start_par_count) + "_"
print('Fitting of cell took function took {:.3f} s'.format((end_time - start_time)))
#print(results_path)
print_comparision_cell_model(cell_data, parameters, plot=True, savepath=results_path)
break
from Sounds import play_finished_sound
play_finished_sound()
pass
def print_comparision_cell_model(cell_data, parameters, plot=False, savepath=None):
res_model = LifacNoiseModel(parameters)
fi_curve = FICurve(cell_data)
m_bf, m_vs, m_sc = res_model.calculate_baseline_markers(cell_data.get_eod_frequency())
f_baselines, f_zeros, m_f_infinities = res_model.calculate_fi_curve(fi_curve.stimulus_value, cell_data.get_eod_frequency())
f_infinities_fit = hF.fit_clipped_line(fi_curve.stimulus_value, m_f_infinities)
m_f_infinities_slope = f_infinities_fit[0]
f_zeros_fit = hF.fit_boltzmann(fi_curve.stimulus_value, f_zeros)
m_f_zero_slope = fu.full_boltzmann_straight_slope(f_zeros_fit[0], f_zeros_fit[1], f_zeros_fit[2], f_zeros_fit[3])
c_bf = cell_data.get_base_frequency()
c_vs = cell_data.get_vector_strength()
c_sc = cell_data.get_serial_correlation(1)
c_f_slope = fi_curve.get_f_infinity_slope()
c_f_values = fi_curve.f_infinities
c_f_zero_slope = fi_curve.get_fi_curve_slope_of_straight()
c_f_zero_values = fi_curve.f_zeros
print("bf: cell - {:.2f} vs model {:.2f}".format(c_bf, m_bf))
print("vs: cell - {:.2f} vs model {:.2f}".format(c_vs, m_vs))
print("sc: cell - {:.2f} vs model {:.2f}".format(c_sc[0], m_sc[0]))
print("f_inf_slope: cell - {:.2f} vs model {:.2f}".format(c_f_slope, m_f_infinities_slope))
print("f infinity values:\n cell -", c_f_values, "\n model -", m_f_infinities)
print("f_zero_slope: cell - {:.2f} vs model {:.2f}".format(c_f_zero_slope, m_f_zero_slope))
print("f zero values:\n cell -", c_f_zero_values, "\n model -", f_zeros)
if plot:
f_b, f_zero, f_inf = res_model.calculate_fi_curve(cell_data.get_fi_contrasts(), cell_data.get_eod_frequency())
fi_curve.plot_fi_curve(savepath=savepath, comp_f_baselines=f_b, comp_f_zeros=f_zero, comp_f_infs=f_inf)
class Fitter:
def __init__(self, params=None):
if params is None:
self.base_model = LifacNoiseModel({"step_size": 0.00005})
else:
self.base_model = LifacNoiseModel(params)
if "step_size" not in params:
self.base_model.set_variable("step_size", 0.00005)
#
self.fi_contrasts = []
self.eod_freq = 0
self.sc_max_lag = 1
# values to be replicated:
self.baseline_freq = 0
self.vector_strength = -1
self.serial_correlation = []
self.f_inf_values = []
self.f_inf_slope = 0
self.f_zero_values = []
self.f_zero_slope = 0
self.f_zero_fit = []
self.tau_a = 0
self.delta_a = 0
# counts how often the cost_function was called
self.counter = 0
def fit_model_to_data(self, data: CellData, start_parameters=None):
self.eod_freq = data.get_eod_frequency()
self.baseline_freq = data.get_base_frequency()
self.vector_strength = data.get_vector_strength()
self.serial_correlation = data.get_serial_correlation(self.sc_max_lag)
fi_curve = FICurve(data, contrast=True)
self.fi_contrasts = fi_curve.stimulus_value
self.f_inf_values = fi_curve.f_infinities
self.f_inf_slope = fi_curve.get_f_infinity_slope()
self.f_zero_values = fi_curve.f_zeros
self.f_zero_fit = fi_curve.boltzmann_fit_vars
self.f_zero_slope = fi_curve.get_fi_curve_slope_of_straight()
# self.f_zero_slope = fi_curve.get_fi_curve_slope_at(fi_curve.get_f_zero_and_f_inf_intersection()) # around 1/3 of the value at straight
self.delta_a = (self.f_zero_slope / self.f_inf_slope) / 1000 # seems to work if divided by 1000...
adaption = Adaption(data, fi_curve)
self.tau_a = adaption.get_tau_real()
# print("delta_a: {:.3f}".format(self.delta_a), "tau_a: {:.3f}".format(self.tau_a))
return self.fit_routine_5(data, start_parameters)
# return self.fit_model(fit_adaption=False)
def fit_routine_1(self, cell_data=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_1_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, noise_strength, input_scaling
x0 = np.array([0.02, 0.03, 70])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 1, 1, 1, 0, 0)
fmin_step1 = minimize(fun=self.cost_function_with_fixed_adaption, args=(self.tau_a, self.delta_a, error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters_step1 = self.base_model.get_parameters()
if cell_data is not None:
print("##### After step 1: (fixed adaption)")
print_comparision_cell_model(cell_data, res_parameters_step1)
self.counter = 0
x0 = np.array([res_parameters_step1["mem_tau"], res_parameters_step1["noise_strength"],
res_parameters_step1["input_scaling"], res_parameters_step1["tau_a"],
res_parameters_step1["delta_a"]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 1, 1, 1, 2, 4)
fmin_step2 = minimize(fun=self.cost_function_all, args=(error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters_step2 = self.base_model.get_parameters()
if cell_data is not None:
print("##### After step 2: (Everything)")
# print_comparision_cell_model(cell_data, res_parameters_step2)
return fmin_step2, res_parameters_step2
def fit_routine_2(self, cell_data=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_2_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, noise_strength, input_scaling
x0 = np.array([0.02, 0.03, 70])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 5, 1, 2, 0, 0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption,
args=(self.tau_a, self.delta_a, error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters = self.base_model.get_parameters()
return fmin, res_parameters
def fit_routine_3(self, cell_data=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_3_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, noise_strength, input_scaling, dend_tau
x0 = np.array([0.02, 0.03, 70, 0.001])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 5, 1, 2, 0, 0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption_with_dend_tau,
args=(self.tau_a, self.delta_a, error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters = self.base_model.get_parameters()
return fmin, res_parameters
def fit_routine_4(self, cell_data=None, start_parameters=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_4_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, input_scaling, dend_tau
if start_parameters is None:
x0 = np.array([0.02, 70, 0.001])
else:
x0 = np.array([start_parameters["mem_tau"], start_parameters["noise_strength"],
start_parameters["input_scaling"], start_parameters["dend_tau"]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (0, 5, 15, 1, 2, 1, 0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption_with_dend_tau,
args=(self.tau_a, self.delta_a, error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 400, "maxiter": 400})
res_parameters = fmin.x
# print_comparision_cell_model(cell_data, self.base_model.get_parameters())
self.counter = 0
x0 = np.array([self.tau_a,
self.delta_a, res_parameters[0]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (0, 1, 1, 2, 2, 4, 2)
fmin = minimize(fun=self.cost_function_only_adaption,
args=(error_weights,), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001})
res_parameters = fmin.x
print(fmin)
print_comparision_cell_model(cell_data, self.base_model.get_parameters())
#
# # self.counter = 0
# # x0 = np.array([res_parameters[0],
# # res_parameters[1], self.tau_a,
# # self.delta_a, res_parameters[2]])
# # initial_simplex = create_init_simples(x0, search_scale=2)
# # error_weights = (1, 3, 1, 2, 1, 3, 2)
# # fmin = minimize(fun=self.cost_function_all_without_noise,
# # args=(error_weights,), x0=x0, method="Nelder-Mead",
# # options={"initial_simplex": initial_simplex, "xatol": 0.001})
# # res_parameters = self.base_model.get_parameters()
# #
# # print_comparision_cell_model(cell_data, self.base_model.get_parameters())
#
# self.counter = 0
# x0 = np.array([res_parameters[0], start_parameters["noise_strength"],
# res_parameters[1], res_parameters[2],
# res_parameters[3], res_parameters[4]])
# initial_simplex = create_init_simples(x0, search_scale=2)
# error_weights = (0, 1, 2, 1, 1, 3, 2)
# fmin = minimize(fun=self.cost_function_all,
# args=(error_weights,), x0=x0, method="Nelder-Mead",
# options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxiter": 599})
# res_parameters = self.base_model.get_parameters()
return fmin, self.base_model.get_parameters()
def fit_routine_5(self, cell_data=None, start_parameters=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_5_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, input_scaling, dend_tau
if start_parameters is None:
x0 = np.array([0.02, 70, 0.001])
else:
x0 = np.array([start_parameters["mem_tau"], start_parameters["input_scaling"],
self.tau_a, self.delta_a, start_parameters["dend_tau"]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (0, 1, 1, 1, 1, 2, 1)
fmin = minimize(fun=self.cost_function_all_without_noise,
args=(error_weights,), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 400, "maxiter": 400})
res_parameters = fmin.x
return fmin, self.base_model.get_parameters()
def fit_model(self, x0=None, initial_simplex=None, fit_adaption=False):
self.counter = 0
if fit_adaption:
if x0 is None:
x0 = np.array([0.02, 0.03, 70, self.tau_a, self.delta_a])
if initial_simplex is None:
initial_simplex = create_init_simples(x0)
fmin = minimize(fun=self.cost_function_all, x0=x0, method="Nelder-Mead", options={"initial_simplex": initial_simplex})
else:
if x0 is None:
x0 = np.array([0.02, 0.03, 70])
if initial_simplex is None:
initial_simplex = create_init_simples(x0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption, x0=x0, args=(self.tau_a, self.delta_a), method="Nelder-Mead", options={"initial_simplex": initial_simplex})
return fmin, self.base_model.get_parameters()
def cost_function_all(self, X, error_weights=None):
self.base_model.set_variable("mem_tau", X[0])
self.base_model.set_variable("noise_strength", X[1])
self.base_model.set_variable("input_scaling", X[2])
self.base_model.set_variable("tau_a", X[3])
self.base_model.set_variable("delta_a", X[4])
self.base_model.set_variable("dend_tau", X[5])
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_all_without_noise(self, X, error_weights=None):
self.base_model.set_variable("mem_tau", X[0])
self.base_model.set_variable("input_scaling", X[1])
self.base_model.set_variable("tau_a", X[2])
self.base_model.set_variable("delta_a", X[3])
self.base_model.set_variable("dend_tau", X[4])
self.base_model.set_variable("noise_strength", 0)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_only_adaption(self, X, error_weights=None):
self.base_model.set_variable("tau_a", X[0])
self.base_model.set_variable("delta_a", X[1])
self.base_model.set_variable("mem_tau", X[2])
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_with_fixed_adaption(self, X, tau_a, delta_a, error_weights=None):
# set model parameters:
model = self.base_model
model.set_variable("mem_tau", X[0])
model.set_variable("noise_strength", X[1])
model.set_variable("input_scaling", X[2])
model.set_variable("tau_a", tau_a)
model.set_variable("delta_a", delta_a)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
model.set_variable("v_offset", v_offset)
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_with_fixed_adaption_with_dend_tau_no_noise(self, X, tau_a, delta_a, error_weights=None):
# set model parameters:
model = self.base_model
model.set_variable("mem_tau", X[0])
model.set_variable("input_scaling", X[1])
model.set_variable("dend_tau", X[2])
model.set_variable("tau_a", tau_a)
model.set_variable("delta_a", delta_a)
model.set_variable("noise_strength", 0)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
model.set_variable("v_offset", v_offset)
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_with_fixed_adaption_with_dend_tau(self, X, tau_a, delta_a, error_weights=None):
# set model parameters:
model = self.base_model
model.set_variable("mem_tau", X[0])
model.set_variable("noise_strength", X[1])
model.set_variable("input_scaling", X[2])
model.set_variable("dend_tau", X[3])
model.set_variable("tau_a", tau_a)
model.set_variable("delta_a", delta_a)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
model.set_variable("v_offset", v_offset)
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def calculate_errors(self, error_weights=None):
baseline_freq, vector_strength, serial_correlation = self.base_model.calculate_baseline_markers(self.eod_freq,
self.sc_max_lag)
# print("baseline features calculated!")
# f_infinities, f_infinities_slope = self.base_model.calculate_fi_markers(self.fi_contrasts, self.eod_freq)
f_baselines, f_zeros, f_infinities = self.base_model.calculate_fi_curve(self.fi_contrasts, self.eod_freq)
try:
f_infinities_fit = hF.fit_clipped_line(self.fi_contrasts, f_infinities)
except Exception as e:
print("EXCEPTION IN FIT LINE!")
print(e)
f_infinities_fit = [0, 0]
f_infinities_slope = f_infinities_fit[0]
try:
f_zeros_fit = hF.fit_boltzmann(self.fi_contrasts, f_zeros)
except Exception as e:
print("EXCEPTION IN FIT BOLTZMANN!")
print(e)
f_zeros_fit = [0, 0, 0, 0]
f_zero_slope = fu.full_boltzmann_straight_slope(f_zeros_fit[0], f_zeros_fit[1], f_zeros_fit[2], f_zeros_fit[3])
# print("fi-curve features calculated!")
# calculate errors with reference values
error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq)
error_vs = abs((vector_strength - self.vector_strength) / self.vector_strength)
error_sc = abs((serial_correlation[0] - self.serial_correlation[0]) / self.serial_correlation[0])
error_f_inf_slope = abs((f_infinities_slope - self.f_inf_slope) / self.f_inf_slope) * 4
error_f_inf = calculate_f_values_error(f_infinities, self.f_inf_values) * .5
error_f_zero_slope = abs((f_zero_slope - self.f_zero_slope) / self.f_zero_slope)
error_f_zero = calculate_f_values_error(f_zeros, self.f_zero_values)
error_list = [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
if error_weights is not None and len(error_weights) == len(error_list):
for i in range(len(error_weights)):
error_list[i] = error_list[i] * error_weights[i]
error = sum(error_list)
self.counter += 1
if self.counter % 200 == 0: # and False: # TODO currently shut off!
print("\nCost function run times: {:}\n".format(self.counter),
"Total weighted error: {:.4f}\n".format(error),
"Baseline frequency - expected: {:.0f}, current: {:.0f}, error: {:.3f}\n".format(
self.baseline_freq, baseline_freq, error_bf),
"Vector strength - expected: {:.2f}, current: {:.2f}, error: {:.3f}\n".format(
self.vector_strength, vector_strength, error_vs),
"Serial correlation - expected: {:.2f}, current: {:.2f}, error: {:.3f}\n".format(
self.serial_correlation[0], serial_correlation[0], error_sc),
"f-infinity slope - expected: {:.0f}, current: {:.0f}, error: {:.3f}\n".format(
self.f_inf_slope, f_infinities_slope, error_f_inf_slope),
"f-infinity values:\nexpected:", np.around(self.f_inf_values), "\ncurrent: ", np.around(f_infinities),
"\nerror: {:.3f}\n".format(error_f_inf),
"f-zero slope - expected: {:.0f}, current: {:.0f}, error: {:.3f}\n".format(
self.f_zero_slope, f_zero_slope, error_f_zero_slope),
"f-zero values:\nexpected:", np.around(self.f_zero_values), "\ncurrent: ", np.around(f_zeros),
"\nerror: {:.3f}".format(error_f_zero))
return error_list
def calculate_f_values_error(fit, reference):
error = 0
for i in range(len(reference)):
# TODO ??? add a constant to f_inf to allow for small differences in small values
# example: 1 vs 3 would result in way smaller error.
constant = 50
error += abs((fit[i] - reference[i])+constant) / (abs(reference[i]) + constant)
norm_error = error / len(reference)
return norm_error
def create_init_simples(x0, search_scale=3.):
dim = len(x0)
simplex = [[x0[0]/search_scale], [x0[0]*search_scale]]
for i in range(1, dim, 1):
for vertex in simplex:
vertex.append(x0[i]*search_scale)
new_vertex = list(x0[:i])
new_vertex.append(x0[i]/search_scale)
simplex.append(new_vertex)
return simplex
if __name__ == '__main__':
main()