244 lines
8.5 KiB
Python
244 lines
8.5 KiB
Python
|
|
from stimuli.AbstractStimulus import AbstractStimulus
|
|
from models.AbstractModel import AbstractModel
|
|
import numpy as np
|
|
import functions as fu
|
|
from numba import jit
|
|
import helperFunctions as hF
|
|
from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus
|
|
from scipy.optimize import curve_fit
|
|
|
|
|
|
class LifacNoiseModel(AbstractModel):
|
|
# all times in milliseconds
|
|
# possible mem_res: 100 * 1000000 exact value unknown in p-units
|
|
DEFAULT_VALUES = {"mem_tau": 20,
|
|
"v_base": 0,
|
|
"v_zero": 0,
|
|
"threshold": 1,
|
|
"v_offset": 50,
|
|
"input_scaling": 1,
|
|
"delta_a": 0.4,
|
|
"tau_a": 40,
|
|
"a_zero": 0,
|
|
"noise_strength": 3,
|
|
"step_size": 0.01}
|
|
|
|
def __init__(self, params: dict = None):
|
|
super().__init__(params)
|
|
|
|
self.voltage_trace = []
|
|
self.adaption_trace = []
|
|
self.spiketimes = []
|
|
self.stimulus = None
|
|
# self.frequency_trace = []
|
|
|
|
def simulate(self, stimulus: AbstractStimulus, total_time_s):
|
|
|
|
self.stimulus = stimulus
|
|
output_voltage = []
|
|
adaption = []
|
|
spiketimes = []
|
|
current_v = self.parameters["v_zero"]
|
|
current_a = self.parameters["a_zero"]
|
|
|
|
for time_point in np.arange(0, total_time_s*1000, self.parameters["step_size"]):
|
|
# rectified input:
|
|
stimulus_strength = fu.rectify(stimulus.value_at_time_in_ms(time_point))
|
|
|
|
v_next = self._calculate_voltage_step(current_v, stimulus_strength - current_a)
|
|
a_next = self._calculate_adaption_step(current_a)
|
|
|
|
if v_next > self.parameters["threshold"]:
|
|
v_next = self.parameters["v_base"]
|
|
spiketimes.append(time_point/1000)
|
|
a_next += self.parameters["delta_a"] / (self.parameters["tau_a"] / 1000)
|
|
|
|
output_voltage.append(v_next)
|
|
adaption.append(a_next)
|
|
|
|
current_v = v_next
|
|
current_a = a_next
|
|
|
|
self.voltage_trace = output_voltage
|
|
self.adaption_trace = adaption
|
|
self.spiketimes = spiketimes
|
|
|
|
return output_voltage, spiketimes
|
|
|
|
def simulate_fast(self, stimulus: AbstractStimulus, total_time_s, time_start=0):
|
|
|
|
v_zero = self.parameters["v_zero"]
|
|
a_zero = self.parameters["a_zero"]
|
|
step_size = self.parameters["step_size"]
|
|
threshold = self.parameters["threshold"]
|
|
v_base = self.parameters["v_base"]
|
|
delta_a = self.parameters["delta_a"]
|
|
tau_a = self.parameters["tau_a"]
|
|
v_offset = self.parameters["v_offset"]
|
|
mem_tau = self.parameters["mem_tau"]
|
|
noise_strength = self.parameters["noise_strength"]
|
|
|
|
stimulus_array = stimulus.as_array(time_start, total_time_s, step_size)
|
|
rectified_stimulus = rectify_stimulus_array(stimulus_array)
|
|
|
|
parameters = np.array([v_zero, a_zero, step_size, threshold, v_base, delta_a, tau_a, v_offset, mem_tau, noise_strength])
|
|
|
|
voltage_trace, adaption, spiketimes = simulate_fast(rectified_stimulus, total_time_s, parameters)
|
|
|
|
self.stimulus = stimulus
|
|
self.voltage_trace = voltage_trace
|
|
self.adaption_trace = adaption
|
|
self.spiketimes = spiketimes
|
|
|
|
return voltage_trace, spiketimes
|
|
|
|
def _calculate_voltage_step(self, current_v, input_v):
|
|
v_base = self.parameters["v_base"]
|
|
step_size = self.parameters["step_size"]
|
|
v_offset = self.parameters["v_offset"]
|
|
mem_tau = self.parameters["mem_tau"]
|
|
|
|
noise_strength = self.parameters["noise_strength"]
|
|
noise_value = np.random.normal()
|
|
noise = noise_strength * noise_value / np.sqrt(step_size)
|
|
|
|
return current_v + step_size * ((v_base - current_v + v_offset + input_v + noise) / mem_tau)
|
|
|
|
def _calculate_adaption_step(self, current_a):
|
|
step_size = self.parameters["step_size"]
|
|
return current_a + (step_size * (-current_a)) / self.parameters["tau_a"]
|
|
|
|
def min_stimulus_strength_to_spike(self):
|
|
return self.parameters["threshold"] - self.parameters["v_base"]
|
|
|
|
def get_sampling_interval(self):
|
|
return self.parameters["step_size"]
|
|
|
|
def get_frequency(self):
|
|
# TODO also change simulates_frequency() if any calculation is added!
|
|
raise NotImplementedError("No calculation implemented yet for the frequency.")
|
|
|
|
def get_spiketimes(self):
|
|
return self.spiketimes
|
|
|
|
def get_voltage_trace(self):
|
|
return self.voltage_trace
|
|
|
|
def get_adaption_trace(self):
|
|
return self.adaption_trace
|
|
|
|
def simulates_frequency(self) -> bool:
|
|
return False
|
|
|
|
def simulates_spiketimes(self) -> bool:
|
|
return True
|
|
|
|
def simulates_voltage_trace(self) -> bool:
|
|
return True
|
|
|
|
def get_recording_times(self):
|
|
# [delay, stimulus_start, stimulus_duration, time_to_end]
|
|
self.stimulus = AbstractStimulus()
|
|
delay = 0
|
|
start = self.stimulus.get_stimulus_start_s()
|
|
duration = self.stimulus.get_stimulus_duration_s()
|
|
total_time = len(self.voltage_trace) / self.parameters["step_size"]
|
|
|
|
return [delay, start, duration, total_time]
|
|
|
|
def get_model_copy(self):
|
|
return LifacNoiseModel(self.parameters)
|
|
|
|
def calculate_baseline_markers(self, base_stimulus_freq, max_lag=1):
|
|
"""
|
|
calculates the baseline markers baseline frequency, vector strength and serial correlation
|
|
based on simulated 30 seconds with a standard Sinusoidal stimulus with the given frequency
|
|
|
|
:return: baseline_freq, vs, sc
|
|
"""
|
|
base_stimulus = SinusAmplitudeModulationStimulus(base_stimulus_freq, 0, 0)
|
|
_, spiketimes = self.simulate_fast(base_stimulus, 30)
|
|
|
|
baseline_freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, 5)
|
|
|
|
relative_spiketimes = np.array([s % (1 / base_stimulus_freq) for s in spiketimes])
|
|
eod_durations = np.full((len(spiketimes)), 1 / base_stimulus_freq)
|
|
vector_strength = hF.__vector_strength__(relative_spiketimes, eod_durations)
|
|
serial_correlation = hF.calculate_serial_correlation(np.array(spiketimes), max_lag)
|
|
|
|
return baseline_freq, vector_strength, serial_correlation
|
|
|
|
def calculate_fi_markers(self, contrasts, base_freq, modulation_frequency):
|
|
"""
|
|
calculates the fi markers f_infinity, f_infinity_slope for given contrasts
|
|
based on simulated 2 seconds for each contrast
|
|
:return: f_inf_values_list, f_inf_slope
|
|
"""
|
|
|
|
f_infinities = []
|
|
for contrast in contrasts:
|
|
stimulus = SinusAmplitudeModulationStimulus(base_freq, contrast, modulation_frequency)
|
|
_, spiketimes = self.simulate_fast(stimulus, 0.5)
|
|
|
|
if len(spiketimes) < 2:
|
|
f_infinities.append(0)
|
|
else:
|
|
f_infinity = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, 0.4)
|
|
f_infinities.append(f_infinity)
|
|
|
|
popt, pcov = curve_fit(fu.line, contrasts, f_infinities, maxfev=10000)
|
|
|
|
f_infinities_slope = popt[0]
|
|
|
|
return f_infinities, f_infinities_slope
|
|
|
|
|
|
@jit(nopython=True)
|
|
def rectify_stimulus_array(stimulus_array:np.ndarray):
|
|
return np.array([x if x > 0 else 0 for x in stimulus_array])
|
|
|
|
|
|
@jit(nopython=True)
|
|
def simulate_fast(rectified_stimulus_array, total_time_s, parameters: np.ndarray):
|
|
|
|
v_zero = parameters[0]
|
|
a_zero = parameters[1]
|
|
step_size = parameters[2]
|
|
threshold = parameters[3]
|
|
v_base = parameters[4]
|
|
delta_a = parameters[5]
|
|
tau_a = parameters[6]
|
|
v_offset = parameters[7]
|
|
mem_tau = parameters[8]
|
|
noise_strength = parameters[9]
|
|
|
|
time = np.arange(0, total_time_s * 1000, step_size)
|
|
length = len(time)
|
|
output_voltage = np.zeros(length)
|
|
adaption = np.zeros(length)
|
|
stimulus_values = rectified_stimulus_array
|
|
|
|
spiketimes = []
|
|
output_voltage[0] = v_zero
|
|
adaption[0] = a_zero
|
|
|
|
for i in range(len(time)-1):
|
|
noise_value = np.random.normal()
|
|
noise = noise_strength * noise_value / np.sqrt(step_size)
|
|
|
|
output_voltage[i] = output_voltage[i-1] + ((v_base - output_voltage[i-1] + v_offset + stimulus_values[i] - adaption[i-1] + noise) / mem_tau) * step_size
|
|
adaption[i] = adaption[i-1] + ((-adaption[i-1]) / tau_a) * step_size
|
|
|
|
if output_voltage[i] > threshold:
|
|
output_voltage[i] = v_base
|
|
spiketimes.append(i*step_size)
|
|
adaption[i] += delta_a / (tau_a / 1000)
|
|
|
|
return output_voltage, adaption, spiketimes
|
|
|
|
|
|
|
|
|
|
|