27 lines
1.0 KiB
Python
27 lines
1.0 KiB
Python
import pyrelacs.DataLoader as Dl
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from DataParserFactory import get_parser
|
|
import pprint
|
|
from Baseline import get_baseline_class
|
|
from FiCurve import get_fi_curve_class
|
|
from CellData import icelldata_of_dir
|
|
from models.LIFACnoise import LifacNoiseModel
|
|
|
|
parameter_bursty_model = {'step_size': 5e-05, 'mem_tau': 0.0066693150193490695, 'v_base': 0, 'v_zero': 0,
|
|
'threshold': 1, 'v_offset': -45.703125, 'input_scaling': 172.13861987237314,
|
|
'delta_a': 0.06148215166012024, 'tau_a': 0.03391674075000068, 'a_zero': 2,
|
|
'noise_strength': 0.0684136549210377, 'dend_tau': 0.0013694103932013805,
|
|
'refractory_period': 0.001}
|
|
eod = 752
|
|
model = LifacNoiseModel(parameter_bursty_model)
|
|
baseline_model = get_baseline_class(model, 752, trials=2)
|
|
baseline_model.get_burstiness()
|
|
|
|
quit()
|
|
|
|
|
|
for cell_data in icelldata_of_dir("../data/"):
|
|
baseline = get_baseline_class(cell_data)
|
|
|
|
baseline.get_burstiness() |