P-unit_model/unittests/testHelperFunctions.py
2020-02-27 09:28:34 +01:00

130 lines
4.7 KiB
Python

import unittest
import numpy as np
import helperFunctions as hF
import matplotlib.pyplot as plt
class HelperFunctionsTester(unittest.TestCase):
noise_levels = [0, 0.05, 0.1, 0.2]
frequencies = [0, 1, 5, 30, 100, 500, 750, 1000]
def setUp(self):
pass
def tearDown(self):
pass
def test_calculate_eod_frequency(self):
start = 0
end = 5
step = 0.1 / 1000
freqs = [0, 1, 10, 500, 700, 1000]
for freq in freqs:
time = np.arange(start, end, step)
eod = np.sin(freq*(2*np.pi) * time)
self.assertEqual(freq, round(hF.calculate_eod_frequency(time, eod), 2))
def test__vector_strength__is_1(self):
length = 2000
rel_spike_times = np.full(length, 0.3)
eod_durations = np.full(length, 0.14)
self.assertEqual(1, round(hF.__vector_strength__(rel_spike_times,eod_durations), 2))
def test__vector_strength__is_0(self):
length = 2000
period = 0.14
rel_spike_times = np.arange(0, period, period/length)
eod_durations = np.full(length, period)
self.assertEqual(0, round(hF.__vector_strength__(rel_spike_times, eod_durations), 5))
def test_mean_freq_of_spiketimes_after_time_x(self):
simulation_time = 8
for freq in self.frequencies:
for n in self.noise_levels:
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
sim_freq = hF.mean_freq_of_spiketimes_after_time_x(spikes, 0.00005, simulation_time/4, time_in_ms=False)
max_diff = round(n*(10+0.7*np.sqrt(freq)), 2)
# print("noise: {:.2f}".format(n), "\texpected: {:.2f}".format(freq), "\tgotten: {:.2f}".format(round(sim_freq, 2)), "\tfreq diff: {:.2f}".format(abs(freq-round(sim_freq, 2))), "\tmax_diff:", max_diff)
self.assertTrue(abs(freq-round(sim_freq)) <= max_diff, msg="expected freq: {:.2f} vs calculated: {:.2f}. max diff was {:.2f}".format(freq, sim_freq, max_diff))
def test_calculate_isi_frequency(self):
simulation_time = 1
sampling_interval = 0.00005
for freq in self.frequencies:
for n in self.noise_levels:
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
sim_freq = hF.calculate_isi_frequency(spikes, sampling_interval, time_in_ms=False)
isis = np.diff(spikes)
step_length = isis / sampling_interval
rounded_step_length = np.around(step_length)
expected_length = sum(rounded_step_length)
length = len(sim_freq)
self.assertEqual(expected_length, length)
# def test(self):
# test_distribution()
def generate_jittered_spiketimes(frequency, noise_level, start=0, end=5):
if frequency == 0:
return []
mean_isi = 1 / frequency
if noise_level == 0:
return np.arange(start, end, mean_isi)
spikes = [start]
count = 0
while True:
next_isi = np.random.normal(mean_isi, noise_level*mean_isi)
if next_isi <= 0:
count += 1
continue
next_spike = spikes[-1] + next_isi
if next_spike > end:
break
spikes.append(spikes[-1] + next_isi)
# print("count: {:} percentage of missed: {:.2f}".format(count, count/len(spikes)))
if count > 0.01*len(spikes):
print("!!! Danger of lowering actual simulated frequency")
pass
return spikes
def test_distribution():
simulation_time = 5
freqs = [5, 30, 100, 500, 1000]
noise_level = [0.05, 0.1, 0.2, 0.3]
repetitions = 1000
for freq in freqs:
diffs_per_noise = []
for n in noise_level:
diffs = []
print("#### - freq:", freq, "noise level:", n )
for reps in range(repetitions):
spikes = generate_jittered_spiketimes(freq, n, end=simulation_time)
sim_freq = hF.mean_freq_of_spiketimes_after_time_x(spikes, 0.0002, simulation_time / 4, time_in_ms=False)
diffs.append(sim_freq-freq)
diffs_per_noise.append(diffs)
fig, axs = plt.subplots(1, len(noise_level), figsize=(3.5*len(noise_level), 4), sharex='all')
for i in range(len(diffs_per_noise)):
max_diff = np.max(np.abs(diffs_per_noise[i]))
print("Freq: ", freq, "noise: {:.2f}".format(noise_level[i]), "mean: {:.2f}".format(np.mean(diffs_per_noise[i])), "max_diff: {:.4f}".format(max_diff))
bins = np.arange(-max_diff, max_diff, 2*max_diff/100)
axs[i].hist(diffs_per_noise[i], bins=bins)
axs[i].set_title('Noise level: {:.2f}'.format(noise_level[i]))
plt.show()
plt.close()