P-unit_model/stimuli/SinusAmplitudeModulation.py
2020-02-27 09:28:34 +01:00

89 lines
3.8 KiB
Python

from stimuli.AbstractStimulus import AbstractStimulus
import numpy as np
from numba import jit, njit
class SinusAmplitudeModulationStimulus(AbstractStimulus):
def __init__(self, carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1):
self.contrast = contrast
self.modulation_frequency = modulation_frequency
self.amplitude = amplitude
self.carrier_frequency = carrier_frequency
self.start_time = start_time
self.duration = duration
def value_at_time_in_s(self, time_point):
carrier = np.sin(2 * np.pi * self.carrier_frequency * time_point)
if time_point < self.start_time or time_point > self.start_time + self.duration:
return self.amplitude * carrier
am = (1 + self.contrast * np.sin(2*np.pi*self.modulation_frequency * time_point))
return self.amplitude * am * carrier
def get_stimulus_start_s(self):
return self.start_time
def get_stimulus_duration_s(self):
return self.duration
def get_amplitude(self):
return self.contrast
def as_array(self, time_start, total_time, step_size):
carrier = self.carrier_frequency
amp = self.amplitude
mod_freq = self.modulation_frequency
contrast = self.contrast
start_time = self.start_time
duration = self.duration
values = convert_to_array(carrier, amp, mod_freq, contrast, start_time, duration, time_start, total_time, step_size)
return values
# @jit(nopython=True) # makes it slower?
def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_time, duration, time_start, total_time, step_size_s):
# if the whole stimulus time has the amplitude modulation just built it at once;
if time_start >= start_time and start_time+duration < time_start+total_time:
carrier = np.sin(2 * np.pi * carrier_freq * np.arange(start_time, total_time - start_time, step_size_s))
modulation = 1 + contrast * np.sin(2 * np.pi * modulation_freq * np.arange(start_time, total_time - start_time, step_size_s))
values = amplitude * carrier * modulation
return values
# if it is split into parts with and without amplitude modulation built it in parts:
values = np.array([], dtype='float32')
if time_start < start_time:
carrier_before_am = np.sin(2 * np.pi * carrier_freq * np.arange(time_start, start_time, step_size_s))
values = np.concatenate((values, amplitude * carrier_before_am))
# there is at least a second part of the stimulus that contains the amplitude:
# time starts before the end of the am and ends after it was started
if time_start < start_time+duration and time_start+total_time > start_time:
if duration is np.inf:
carrier_during_am = np.sin(
2 * np.pi * carrier_freq * np.arange(start_time, time_start + total_time, step_size_s))
am = 1 + contrast * np.sin(
2 * np.pi * modulation_freq * np.arange(start_time, time_start + total_time, step_size_s))
else:
carrier_during_am = np.sin(
2 * np.pi * carrier_freq * np.arange(start_time, start_time + duration, step_size_s))
am = 1 + contrast * np.sin(
2 * np.pi * modulation_freq * np.arange(start_time, start_time + duration, step_size_s))
values = np.concatenate((values, amplitude * am * carrier_during_am))
else:
if contrast != 0:
print("Given stimulus time parameters (start, total) result in no part of it containing the amplitude modulation!")
if time_start+total_time > start_time+duration:
carrier_after_am = np.sin(2 * np.pi * carrier_freq * np.arange(start_time + duration, time_start + total_time, step_size_s))
values = np.concatenate((values, amplitude*carrier_after_am))
return values