P-unit_model/models/LIFACnoise.py

117 lines
3.9 KiB
Python

from stimuli.AbstractStimulus import AbstractStimulus
from models.AbstractModel import AbstractModel
import numpy as np
import helperFunctions as hf
class LifacNoiseModel(AbstractModel):
# all times in milliseconds
# possible mem_res: 100 * 1000000
DEFAULT_VALUES = {"mem_tau": 20,
"v_base": 0,
"v_zero": -1,
"threshold": 1,
"step_size": 0.01,
"delta_a": 0.4,
"tau_a": 40,
"a_zero": 30,
"v_offset": 50,
"input_scaling": 1,
"noise_strength": 3}
# membrane time constant tau = mem_cap*mem_res
def __init__(self, params: dict = None):
super().__init__(params)
self.voltage_trace = []
self.adaption_trace = []
self.spiketimes = []
self.stimulus = None
# self.frequency_trace = []
def simulate(self, stimulus: AbstractStimulus, total_time_s):
self.stimulus = stimulus
output_voltage = []
adaption = []
spiketimes = []
current_v = self.parameters["v_zero"]
current_a = self.parameters["a_zero"]
for time_point in np.arange(0, total_time_s*1000, self.parameters["step_size"]):
# rectified input:
stimulus_strength = hf.rectify(stimulus.value_at_time_in_ms(time_point))
v_next = self._calculate_voltage_step(current_v, stimulus_strength - current_a)
a_next = self._calculate_adaption_step(current_a)
if v_next > self.parameters["threshold"]:
v_next = self.parameters["v_base"]
spiketimes.append(time_point/1000)
a_next += self.parameters["delta_a"] / (self.parameters["tau_a"] / 1000)
output_voltage.append(v_next)
adaption.append(a_next)
current_v = v_next
current_a = a_next
self.voltage_trace = output_voltage
self.adaption_trace = adaption
self.spiketimes = spiketimes
return output_voltage, spiketimes
def _calculate_voltage_step(self, current_v, input_v):
v_base = self.parameters["v_base"]
step_size = self.parameters["step_size"]
v_offset = self.parameters["V_offset"]
mem_tau = self.parameters["mem_tau"]
noise_strength = self.parameters["noise_strength"]
noise_value = np.random.normal()
noise = noise_strength * noise_value / np.sqrt(step_size)
return current_v + step_size * ((v_base - current_v + v_offset + input_v + noise) / mem_tau)
def _calculate_adaption_step(self, current_a):
step_size = self.parameters["step_size"]
return current_a + (step_size * (-current_a)) / self.parameters["tau_a"]
def min_stimulus_strength_to_spike(self):
return self.parameters["threshold"] - self.parameters["v_base"]
def get_sampling_interval(self):
return self.parameters["step_size"]
def get_frequency(self):
# TODO also change simulates_frequency() if any calculation is added!
raise NotImplementedError("No calculation implemented yet for the frequency.")
def get_spiketimes(self):
return self.spiketimes
def get_voltage_trace(self):
return self.voltage_trace
def get_adaption_trace(self):
return self.adaption_trace
def simulates_frequency(self) -> bool:
return False
def simulates_spiketimes(self) -> bool:
return True
def simulates_voltage_trace(self) -> bool:
return True
def get_recording_times(self):
# [delay, stimulus_start, stimulus_duration, time_to_end]
self.stimulus = AbstractStimulus()
delay = 0
start = self.stimulus.get_stimulus_start_s()
duration = self.stimulus.get_stimulus_duration_s()
total_time = len(self.voltage_trace) / self.parameters["step_size"]
return [delay, start, duration, total_time]