197 lines
7.6 KiB
Python
197 lines
7.6 KiB
Python
from models.LIFACnoise import LifacNoiseModel
|
|
from CellData import CellData, icelldata_of_dir
|
|
from FiCurve import FICurve
|
|
from AdaptionCurrent import Adaption
|
|
from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus
|
|
import helperFunctions as hF
|
|
import numpy as np
|
|
from scipy.optimize import curve_fit, minimize
|
|
import functions as fu
|
|
import time
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
def main():
|
|
# run_test_with_fixed_model()
|
|
# quit()
|
|
|
|
fitter = Fitter()
|
|
fmin, params = fitter.fit_model_to_values(700, 1400, [-0.3], 1, [0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3], [1370, 1380, 1390, 1400, 1410, 1420, 1430], 100, 0.02, 0.01)
|
|
|
|
print("calculated parameters:")
|
|
print(params)
|
|
|
|
def run_with_real_data():
|
|
for celldata in icelldata_of_dir("./data/"):
|
|
start_time = time.time()
|
|
fitter = Fitter(celldata)
|
|
fmin, parameters = fitter.fit_model_to_data()
|
|
|
|
print(fmin)
|
|
print(parameters)
|
|
end_time = time.time()
|
|
|
|
print('Fitting of cell took function took {:.3f} s'.format((end_time - start_time)))
|
|
|
|
pass
|
|
|
|
|
|
def run_test_with_fixed_model():
|
|
a_tau = 10
|
|
a_delta = 0.08
|
|
|
|
parameters = {'mem_tau': 5, 'delta_a': a_delta, 'input_scaling': 100,
|
|
'v_offset': 80, 'threshold': 1, 'v_base': 0, 'step_size': 0.00005, 'tau_a': a_tau,
|
|
'a_zero': 0, 'v_zero': 0, 'noise_strength': 0.5}
|
|
|
|
model = LifacNoiseModel(parameters)
|
|
eod_freq = 750
|
|
contrasts = np.arange(0.5, 1.51, 0.1)
|
|
modulation_freq = 10
|
|
baseline_freq, vector_strength, serial_correlation = model.calculate_baseline_markers(eod_freq)
|
|
f_infinities, f_infinities_slope = model.calculate_fi_markers(contrasts, eod_freq, modulation_freq)
|
|
|
|
fitter = Fitter()
|
|
fmin, fit_parameters = fitter.fit_model_to_values(eod_freq, baseline_freq, serial_correlation, vector_strength, contrasts, f_infinities, f_infinities_slope, a_delta, a_tau)
|
|
print("calculated parameters:")
|
|
print(fit_parameters)
|
|
|
|
print("ref parameters:")
|
|
print(parameters)
|
|
|
|
|
|
class Fitter:
|
|
|
|
def __init__(self, step_size=None):
|
|
if step_size is not None:
|
|
self.model = LifacNoiseModel({"step_size": step_size})
|
|
else:
|
|
self.model = LifacNoiseModel({"step_size": 0.0005})
|
|
# self.data = data
|
|
self.fi_contrasts = []
|
|
self.eod_freq = 0
|
|
|
|
self.modulation_frequency = 10
|
|
self.sc_max_lag = 1
|
|
|
|
# expected values the model has to replicate
|
|
self.baseline_freq = 0
|
|
self.vector_strength = -1
|
|
self.serial_correlation = []
|
|
|
|
self.f_infinities = []
|
|
self.f_infinities_slope = 0
|
|
|
|
# fixed values needed to fit model
|
|
self.a_tau = 0
|
|
self.a_delta = 0
|
|
|
|
self.counter = 0
|
|
|
|
def calculate_needed_values_from_data(self, data: CellData):
|
|
self.eod_freq = data.get_eod_frequency()
|
|
|
|
self.baseline_freq = data.get_base_frequency()
|
|
self.vector_strength = data.get_vector_strength()
|
|
self.serial_correlation = data.get_serial_correlation(self.sc_max_lag)
|
|
|
|
fi_curve = FICurve(data, contrast=True)
|
|
self.fi_contrasts = fi_curve.stimulus_value
|
|
self.f_infinities = fi_curve.f_infinities
|
|
self.f_infinities_slope = fi_curve.get_f_infinity_slope()
|
|
|
|
f_zero_slope = fi_curve.get_fi_curve_slope_of_straight()
|
|
self.a_delta = f_zero_slope / self.f_infinities_slope
|
|
|
|
adaption = Adaption(data, fi_curve)
|
|
self.a_tau = adaption.get_tau_real()
|
|
|
|
# mem_tau, (threshold?), (v_offset), noise_strength, input_scaling
|
|
def cost_function(self, X, tau_a=10, delta_a=3, error_scaling=()):
|
|
freq_sampling_rate = 0.005
|
|
# set model parameters to the given ones:
|
|
self.model.set_variable("mem_tau", X[0])
|
|
self.model.set_variable("noise_strength", X[1])
|
|
self.model.set_variable("input_scaling", X[2])
|
|
self.model.set_variable("tau_a", tau_a)
|
|
self.model.set_variable("delta_a", delta_a)
|
|
|
|
# minimize the difference in baseline_freq first by fitting v_offset
|
|
# v_offset = self.__fit_v_offset_to_baseline_frequency__()
|
|
base_stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, 0, 0)
|
|
|
|
v_offset = self.model.find_v_offset(self.baseline_freq, base_stimulus)
|
|
self.model.set_variable("v_offset", v_offset)
|
|
|
|
# only eod with amplitude 1 and no modulation
|
|
_, spiketimes = self.model.simulate_fast(base_stimulus, 30)
|
|
|
|
baseline_freq = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, 5)
|
|
# print("model:", baseline_freq, "data:", self.baseline_freq)
|
|
|
|
relative_spiketimes = np.array([s % (1/self.eod_freq) for s in spiketimes if s > 0])
|
|
eod_durations = np.full((len(relative_spiketimes)), 1/self.eod_freq)
|
|
vector_strength = hF.__vector_strength__(relative_spiketimes, eod_durations)
|
|
serial_correlation = hF.calculate_serial_correlation(np.array(spiketimes), self.sc_max_lag)
|
|
|
|
f_infinities = []
|
|
for contrast in self.fi_contrasts:
|
|
stimulus = SinusAmplitudeModulationStimulus(self.eod_freq, contrast, self.modulation_frequency)
|
|
_, spiketimes = self.model.simulate_fast(stimulus, 1)
|
|
|
|
if len(spiketimes) < 2:
|
|
f_infinities.append(0)
|
|
else:
|
|
f_infinity = hF.mean_freq_of_spiketimes_after_time_x(spiketimes, 0.5)
|
|
f_infinities.append(f_infinity)
|
|
|
|
popt, pcov = curve_fit(fu.line, self.fi_contrasts, f_infinities, maxfev=10000)
|
|
|
|
f_infinities_slope = popt[0]
|
|
|
|
error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq)
|
|
error_vs = abs((vector_strength - self.vector_strength) / self.vector_strength)
|
|
error_sc = abs((serial_correlation[0] - self.serial_correlation[0]) / self.serial_correlation[0])
|
|
error_f_inf_slope = abs((f_infinities_slope - self.f_infinities_slope) / self.f_infinities_slope)
|
|
#print("vs:", vector_strength, self.vector_strength)
|
|
#print("sc", serial_correlation[0], self.serial_correlation[0])
|
|
#print("f slope:", f_infinities_slope, self.f_infinities_slope)
|
|
error_f_inf = 0
|
|
for i in range(len(f_infinities)):
|
|
error_f_inf += abs((f_infinities[i] - self.f_infinities[i]) / f_infinities[i])
|
|
|
|
error_f_inf = error_f_inf / len(f_infinities)
|
|
self.counter += 1
|
|
# print("mem_tau:", X[0], "noise:", X[0], "input_scaling:", X[2])
|
|
errors = [error_bf, error_vs, error_sc, error_f_inf_slope, error_f_inf]
|
|
print("Cost function run times:", self.counter, "error sum:", sum(errors), errors)
|
|
return error_bf + error_vs + error_sc + error_f_inf_slope + error_f_inf
|
|
|
|
def fit_model_to_data(self, data: CellData):
|
|
self.calculate_needed_values_from_data(data)
|
|
return self.fit_model()
|
|
|
|
def fit_model_to_values(self, eod_freq, baseline_freq, sc, vs, fi_contrasts, fi_inf_values, fi_inf_slope, a_delta, a_tau):
|
|
self.eod_freq = eod_freq
|
|
self.baseline_freq = baseline_freq
|
|
self.serial_correlation = sc
|
|
self.vector_strength = vs
|
|
self.fi_contrasts = fi_contrasts
|
|
self.f_infinities = fi_inf_values
|
|
self.f_infinities_slope = fi_inf_slope
|
|
self.a_delta = a_delta
|
|
self.a_tau = a_tau
|
|
|
|
return self.fit_model()
|
|
|
|
def fit_model(self):
|
|
x0 = np.array([20, 15, 75])
|
|
init_simplex = np.array([np.array([2, 1, 10]), np.array([40, 100, 140]), np.array([20, 50, 70]), np.array([150, 1, 200])])
|
|
fmin = minimize(fun=self.cost_function, x0=x0, args=(self.a_tau, self.a_delta), method="Nelder-Mead", options={"initial_simplex": init_simplex})
|
|
|
|
return fmin, self.model.get_parameters()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|