P-unit_model/introduction/test.py
2021-01-09 23:59:34 +01:00

71 lines
2.0 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
from my_util import functions as fu
import time
def main():
x_values = np.arange(-1, 1, 0.01)
popt = [0, 0, 0, 0]
y_values = [fu.full_boltzmann(x, popt[0], popt[1], popt[2], popt[3]) for x in x_values]
plt.plot(x_values, y_values)
plt.show()
quit()
for freq in [700, 50, 100, 500, 1000]:
reps = 1000
start = time.time()
for i in range(reps):
mean_isi = 1 / freq
n = 0.7
phase_locking_strength = 0.7
size = 100000
final_isis = np.array([])
while len(final_isis) < size:
isis = np.random.normal(mean_isi, mean_isi*n, size)
isi_phase = (isis % mean_isi) / mean_isi
diff = abs_phase_diff(isi_phase, 0.5)
chance = np.random.random(size)
isis_phase_cleaned = []
for i in range(len(diff)):
if 1-diff[i]**0.05 > chance[i]:
isis_phase_cleaned.append(isis[i])
final_isis = np.concatenate((final_isis, isis_phase_cleaned))
spikes = np.cumsum(final_isis)
spikes = np.sort(spikes[spikes > 0])
clean_isis = np.diff(spikes)
bins = np.arange(-0.01, 0.01, 0.0001)
plt.hist(clean_isis, alpha=0.5, bins=bins)
plt.hist(isis, alpha=0.5, bins=bins)
plt.show()
quit()
end = time.time()
print("It took {:.2f} s to simulate 10s of spikes at {} Hz".format(end-start, freq))
def abs_phase_diff(rel_phases:list, ref_phase:float):
"""
:param rel_phases: relative phases as a list of values between 0 and 1
:param ref_phase: reference phase to which the difference is calculated (between 0 and 1)
:return: list of absolute differences
"""
diff = [abs(min(x-ref_phase, x-ref_phase+1)) for x in rel_phases]
return diff
if __name__ == '__main__':
main()