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Olypher AV, Calabrese RL. Using constraints on neuronal activ-
ity to reveal compensatory changes in neuronal parameters. J
Neurophysiol 98: 3749 –3758, 2007. First published September 12,
2007; doi:10.1152/jn.00842.2007. In this study, we developed a
general description of parameter combinations for which specified
characteristics of neuronal or network activity are constant. Our
approach is based on the implicit function theorem and is applicable
to activity characteristics that smoothly depend on parameters. Such
smoothness is often intrinsic to neuronal systems when they are in
stable functional states. The conclusions about how parameters com-
pensate each other, developed in this study, can thus be used even
without regard to the specific mathematical model describing a par-
ticular neuron or neuronal network. We showed that near a generic
point in the parameter space there are infinitely many other points, or
parameter combinations, for which specified characteristics of activity
are the same as in the original point. These parameter combinations
form a smooth manifold. This manifold can be extended as long as the
gradients of characteristics are defined and independent. All possible
variations of parameters compensating each other are simply all
possible charts of the same manifold. The number of compensating
parameters (but not parameters themselves) is fixed and equal to the
number of the independent characteristics maintained. The algorithm
that we developed shows how to find compensatory functional depen-
dencies between parameters numerically. Our method can be used in
the analysis of the homeostatic regulation, neuronal database search,
model tuning and other applications.

I N T R O D U C T I O N

Numerous studies, both experimental and theoretical, have
revealed myriad factors underlying neuronal and network ac-
tivity. These factors range from neuronal morphology and
distribution of ionic current channels to structural properties of
networks such as the average number of synaptic connections
per neuron. Experiments show that despite the variability in
these factors and the complexity in their interactions, some
characteristics of neuronal activity, and in particular those
related to appropriate function, are maintained (Buzsaki et al.
2002; MacLean et al. 2003; Marder and Goaillard 2006;
Swensen and Bean 2005). These maintained functional char-
acteristics could be constancy in the period of a network
producing rhythmic output, the time interval between the
stimulus onset and the response of a neuron, or many others.

Various factors compensate each other to maintain function.
An example of such compensation has been discovered re-
cently in neurons of the lobster stomatogastric ganglion
(MacLean et al. 2003; Schulz et al. 2006). In neurons with
similar firing properties, there was a linear correlation between

the conductances of transient potassium (IA) and hyperpolar-
ization-activated inward (Ih) currents. This correlation ac-
counted for the commonly observed variability of these two
currents across preparations. Importantly, the correlation ap-
pears to reflect a homeostatic mechanism that regulates IA and
Ih. Experimental (MacLean et al. 2003; Swensen and Bean
2005) and modeling (Achard and De Schutter 2006; Goldman
et al. 2001; MacLean et al. 2005; Prinz et al. 2004) studies in
vertebrates and invertebrates show that multiple combinations
of conductances can underlie similar neuronal behavior, sug-
gesting that multiple complex compensatory mechanisms are
possible. A traditional approach for finding compensatory
mechanisms is based on sensitivity analysis (MacLean et al.
2005; Nygren et al. 1998; Olsen et al. 1995; Paulsen et al.
1982; Weaver et al. 2007). In this analysis, the sensitivity of a
specified characteristic to a certain parameter is a ratio of the
normalized change in the characteristic to the underlying nor-
malized change in the parameter. Sensitivities can be used
to determine approximately how much one parameter must
change from its original value to compensate a change of the
other parameter. That multiple compensatory covariations exist
is well documented (Marder and Goaillard 2006; Rich and
Wenner 2007; Ward 2006); what is lacking are systems for
determining and understanding these covariations.

In this study, we introduce a general method for describing
all putative compensatory covariations of neuronal and net-
work parameters given specified characteristics of neuronal
activity to be maintained. The method rigorously specifies
exact covariations and linear approximations to them. It is
based on a fundamental and powerful mathematical tool, the
implicit function theorem. We show that compensatory covaria-
tions are possible charts of manifolds composed of parameter sets
for which specified characteristics are constant. In particular, we
show that to maintain N independent characteristics of neuronal
activity affected by a change of one or more parameters, at least
N other parameters should change appropriately.

To illustrate the method, we apply it to a model of the
smallest functional network of the leech heartbeat central
pattern generator (CPG) consisting of two mutually inhibitory
neurons (Cymbalyuk et al. 2002; Hill et al. 2001; Olypher et al.
2006; Sorensen et al. 2004) (Fig. 1A). In particular, we show
how certain parameters must covary to maintain the period of
the network activity and the average spike frequency in bursts.
Finally, we discuss applications of our method to the analysis
of the homeostatic regulation, model tuning and other prob-
lems.
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Parts of this paper have been published previously in ab-
stract form (Olypher and Calabrese 2006, 2007).

M E T H O D S

We used a modified version of a model by Hill et al. (2001) of a
half-center oscillator from the leech heartbeat CPG, consisting of two
identical neurons that mutually inhibit one another. The model, like
the living network, produces a periodic pattern of activity where the
two neurons burst alternately (Fig. 2). The neurons were modeled
according to the Hodgkin-Huxley formalism with five inward and
three outward voltage-dependent currents. The inhibitory interactions
of the model neurons, as in the living system, have a graded and a
spike-mediated component (Angstadt and Calabrese 1991; Ivanov and
Calabrese 2000, 2003, 2006a,b; Lu et al. 1997; Olsen and Calabrese
1996). In this study, by the synaptic strength we mean the maximal
conductance, g�SynS, of the spike-mediated current. In the examples
considered, synaptic strength was always one of the parameters

varied. The other parameters were the maximal conductance, g�h, of a
hyperpolarization-activated current, Ih, and a scaling factor, �, for the
inactivation time constant, �h,CaS, of a slowly inactivating low-thresh-
old calcium current, ICaS

dhCaS

dt
�

h�.CaS �V� � hCaS

��h,CaS �V�

Here h�,CaS(V) � 1/(1 � e360(V�0.055)), �h,CaS(V) � 0.2 � 5.25/(1 �

e�2.50(V�0.043)), V was the membrane potential (in V), t was time (in
s) (Hill et al. 2001). By definition, � greater (smaller) than one slows
down (speeds up) the inactivation. When a parameter of the neuronal
model was varied, it was varied in both neurons simultaneously to
comply with the simplifying assumption that the two neurons in the
half-oscillator model are identical. However, our method can be
similarly applied for unilateral variations of parameters.

In our study, we used model neurons with endogenous bursting by
setting the leak current’s maximal conductance g�L � 9.9 nS and the
reversal potential EL � �63.5 mV instead of g�L � 8 nS, EL � �60
mV as in the Hill et al. (2001) model (cf. Cymbalyuk et al. 2002).
Other parameters of the Hill et al. (2001) model were not changed.
The model and the set of chosen parameters are called canonical here.

Another change in the Hill et al. (2001) model was aimed at making
it smooth with respect to the variables and parameters. By smoothness
here and in the following text, we mean at least first-order differen-
tiability. In other words, the right-hand sides of the model system
must change continuously with changes of the variables and param-
eters, and the velocity of these changes must also be continuous. We
consider this requirement as quite natural and meeting physiological
intuition. The original model has only one place that required a change
to meet this requirement—the expression for the total calcium current
ICa � max(0, �ICaF � ICaS � A), where ICaF and ICaS are the rapidly
inactivating and slowly inactivating slow low-threshold calcium cur-
rents, respectively, and A is a dynamic threshold (see details in Hill
et al. 2001). To make the system smooth, this original nonsmooth
function for ICa was replaced here by a smooth sigmoid function

ICa �
� ICaF � ICaS � A

1 � e�500��ICaF�ICaS�A� . This substitution, as expected, had

negligible effect on the solutions of the system.
To quantify the system’s activity for a particular set of parameters,

the model was simulated for 110 s. Measured characteristics were
burst period, T, defined as in Hill et al. (2001) as the time between the
middle spike of one burst and the middle spike of the next burst, and
average intraburst spike frequency, F, defined as a number of spikes
in a burst divided by the period. The period was calculated with the
middle spikes rather than the first or last spikes because it yielded the
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FIG. 1. Variability of inhibitory postsynaptic
currents (IPSCs) in leech heart interneurons.
A: activity of 2 reciprocally inhibitory heart inter-
neurons from 2 different preparations are shown
in black and gray: intracellular (top) and extracel-
lular (bottom) recordings. B: spike-triggered av-
erage IPSCs in the intracellularly recorded inter-
neurons from A, during ongoing activity of the
extracellularly recorded interneuron during the
early part of each burst. C: variability of the IPSC
amplitude measured in 9 different preparations.
Black and gray points correspond to the 2 prepa-
rations in A. Adapted from Marder and Goaillard
(2006); data from Tobin and Calabrese (2005).

FIG. 2. The effect of varying the synaptic strength on the burst period and
intraburst spike frequency in the heart interneuron half-center model. A: period
(left) and spike frequency (right). B: membrane potentials of the 2 reciprocally
inhibitory neurons for g�SynS � 150 nS (100%; left) and g�SynS � 390 nS (260%;
right). - - -, 100 and 260% to match with the range of the synaptic strength in
the example from Fig. 1C.
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smallest coefficient of variation. These two characteristics were cho-
sen because in the living system, the period of these oscillations set
heartbeat period, and the intraburst spike frequency determines the
level of inhibition both within the half-center oscillators and between
the oscillator interneurons and their motor neuron targets (Hill et al.
2001). The first 30 s of the simulation was considered as an interval
sufficient for stabilizing the pattern and were discarded from analysis.
Convergence to a stable regime was confirmed by low variation of the
period over the next 80 s of simulation. The initial conditions for all
simulations were the same and taken from the stable regime corre-
sponding to the canonical parameters. Simulations were performed
with the Matlab (MathWorks, Natick, MA) solver ode15s with the
absolute and relative tolerances 10�9 and 10�8, respectively.
Matlab code is available from http://calabreselx.biology.emory.edu/
pub/HC.zip.

Partial derivatives of activity characteristics with respect to param-
eters were first assessed with standard numeric formulas: by varying
a parameter and finding the ratio of the characteristic’s change over
the parameter’s change, repeating this for doubled variations of the
parameters, and using the Richardson extrapolation to improve the
accuracy of the result (Press et al. 1993). We also estimated the partial
derivatives by calculating the characteristics for the original values of
the parameters and �8, �6, �4, and �2% deviations from the
original values and then applying a linear fit to these values of the
characteristics. Both methods gave similar estimates of the partial
derivatives. Complication arose when considering the partial deriva-
tive of the average intraburst spike frequency, F, with respect to g�SynS.
The changes of F for �8% changes of g�CaS were too small to obtain
a reliable linear fit. Thus we used a linear fit of the values of F
corresponding to �20 and 0% changes of g�SynS to estimate the
derivative and obtained a number with the absolute value less then
0.005 (see following text).

Implicit function theorem

Our main analytical tool was the implicit function theorem (Rudin
1976). The theorem states that under certain conditions, equalities
involving several variables imply functional dependencies between
the variables (APPENDIX A). For example, if the conditions of the
theorem are met, an equality C(p1, p2) � 0, true for particular values
p1 � p1

*, p2 � p2
*, implies that near the point (p1

*, p2
*) there exists a

unique function p2� f(p1) such that p2
* � f(p1

*), C(p1, f(p1)) � 0, and
df� p*1�

dp1

� �
�C(p*1, p*2)/�p1

�C(p*1, p*2)/�p2

. The first condition of the theorem is the

differentiability of characteristics with respect to parameters, which in
the example considered means that partial derivatives �C(p1

*, p2
*)/�p1,

and �C(p1
*, p2

*)/�p2 must exist. The second condition of the theorem is
the nondegenerate dependency of characteristics with respect to pa-
rameters that are supposed to be dependent on other parameters. In the
current example, this condition is fulfilled if �C(p1

*, p2
*)/�p2 � 0.

Algorithm for specifying the variations of model parameters
that maintain activity characteristics

The following algorithm is a general one. It can be applied to
an arbitrary neuronal or network model to determine coordinated
changes of n parameters that do not affect m characteristics. The main
assumption of the algorithm is a smooth dependence of characteristics
on parameters.

First, select parameters p1, p2, . . . , pn of the model to be varied
near some point p* � (p1

*, p2
*, . . . , pn

*) in the parameter space.
Second, select a set of activity characteristics C(p) � (C1(p),

C2(p), . . . , Cm(p)) to be maintained. By subtracting target values from
Ci, we can assume that C(p*) � 0, and the goal is to find p near p*
such that C(p) � 0. Let partial derivatives �Ci(p*)/�pj, i � 1, . . . , m,
j � 1, . . . , n exist.

Third, assume that for y � (p1, . . . , pm), the determinant

det�C	y�p*�� ¢ det��C1(p*)/�p1 �C1(p*)/�p2 . . . �C1(p*)/�pm

�

�Cm �p*)/�p1 �Cm �p*�/�p2 . . . �Cm �p*�/�pm

�� 0.

Fourth, then, according to the implicit function theorem, near p* there
exists a unique function y � f(x), where x � (pm�1, . . . , pn), such that
y* � f(x*), C(f(x), x) � 0, and in linear approximation, 
y �
�[Cy

	(p*)]�1 �Cx
	(p*) �
x, where 
y � (p1 � p1

*, . . . , pm � pm
* ), 
x �

(pm�1 � pm�1
* , . . . , pn �pn

*), and

C	x�p*� � ��C1 �p*�/�pm�1 �C1 �p*�/�pm�2 . . . �C1�p *�/�pn

�Cm �p*�/�pm�1 �Cm�p*�/�pm�2 . . . �Cm�p*�/�pn
�.

Fifth, perform simulations to estimate the range of (pm�1, . . . pn)
variations over which characteristics Ci are well maintained according
to linear approximation. Refine that approximation to get exact
compensatory covariations between parameters (p1, . . . , pm) and
(pm�1, . . . , pn). Repeat the algorithm at another point to extend the
functional dependency between y and x into a further region of the
parameter space.

Definitions: we shall call p1, . . . , pm compensating parameters,
pm�1, . . . , pn compensated parameters, and pi � fi(pm�1, . . . , pn),
1 � i � m, compensatory functions.

Notes on the algorithm

The calculation of the gradients of the selected characteristics is a
key computational step. This step is in common with multiple com-
putational procedures, such as for example the steepest descent
method. The difference here is that we are not interested in the
direction determined by the gradient, but in the direction, or directions
in a multidimensional space, orthogonal to the gradient.

The condition in step 3 of the algorithm means that there is no
characteristic for which the gradient in p* is a linear combination of
the gradients of other characteristics. This condition does not hold if
there is a linear dependence among characteristics, in the simplest
case when Cj(p) � k �Cl(p) for some 1 � j, l � m, and k � 0. Only
independent characteristics can be used for the analysis. Another case
where the condition does not hold is when there is a pair of linearly
correlated parameters, e.g., p1 � 	 �p2 for some 	 � 0. Only one
parameter from such a pair must be kept in the set of compensating
parameters.

The condition in step 3 may not be satisfied at critical (bifurca-
tional) points of the parameter space. Indeed at such points, a solution
to the system, for which the dynamics (characteristics) are specified,
either disappears or changes abruptly. These points limit areas where
functional dependencies between parameters that maintain specified
characteristics can be defined with the help of the implicit function
theorem. For the period of the activity, a corresponding result is well
known (APPENDIX B).

Step 5 does not specify a method for refining the isomanifold. In
this study, we used standard Matlab routines. To find the isomanifold,
on which the period T of the model is equal to the target value T*, we
used the function fzero. fzero finds a zero of a function, in our case
T � T*, by a combination of bisection, secant, and inverse quadratic
interpolation methods. To find the isomanifold, on which the period T
of the model is equal to the target value T*, and the spike frequency
F is equal to the target value F*, we used the function fminsearch.
fminsearch minimizes a function, in our case (T � T*)2 � (F � F*)2,
by the simplex search method.

The implicit function theorem provides a clear geometric descrip-
tion of the set of parameter combinations for which specified charac-
teristics of activity are constant. The theorem shows that these sets
form smooth, n-m dimensional manifolds in the parameter space.
These manifolds are intersections of m (n � 1)-dimensional manifolds
each of which is a level set of a particular characteristic. Because the
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latter manifolds can be called isosurfaces, we’ll refer to their inter-
section as an isomanifold. All possible compensatory covariations of
parameters, with some m parameters being functions of the other n-m
parameters, are possible charts (Arnold 1978) of this isomanifold.
These charts are well defined according to the implicit function
theorem.

R E S U L T S

Maintaining the period of the network in the face of
parameter variation

To illustrate our method for determining compensations of
functional characteristics through parameter variation, we con-
sider examples from our own work. In a leech half-center
oscillator from the heartbeat CPG, the strength of the mutually
inhibitory synapses varies over a more than twofold range yet
cycle period, spike frequency, and other functionally important
output characteristics can remain very similar (Tobin and
Calabrese 2005) (Fig. 1). Similar variations of the synaptic
strength caused significant changes (10%) in the period of our
canonical model of this half-center oscillator (Fig. 2). We later
consider another functionally important characteristic—the av-
erage spike frequency in a burst. Spike frequency determines
the accumulated impact of the spike-mediated inhibition in the
half-center oscillator (Hill et al. 2001). In the model, corre-
sponding changes in synaptic strength also changed the spike
frequency but less than the period and nonmonotonically (Fig.
2A, right).

What parameters of the model can co-vary with g�SynS in
such a way that the period will remain constant, as in the
experiments of Tobin and Calabrese (2005)? Multiple param-
eters, in addition to g�SynS, strongly affect the period in the
model (APPENDIX C, Table 1). Among these parameters are the
maximal conductances of the low-threshold slowly inactivating
calcium current, persistent potassium current and other cur-
rents (Cymbalyuk et al. 2002; Hill et al. 2001; Olypher et al.
2006; Sorensen et al. 2004). According to the general picture
described in METHODS, variations of all these parameters com-
pensating variations of g�SynS are possible parameterizations of
the manifold in the parameter space where the period is
constant. For the current analysis, we chose the maximal
conductance, g�h, of the hyperpolarization-activated current;
any other parameter can be analyzed similarly. Next, we just
followed the steps of the general algorithm.

First, selected parameters were p � (p1, p2) where p1 � g�h,
p2 � g�SynS; p1

* � 4 nS, p2
* � 150 nS.

Second, a specified characteristic was C � T(p) � T(p*),
where T was the cycle period, T(p*) � 7.91 s, C(p*) � 0. A

smooth dependence of T, and hence C, from g�SynS and g�h
follows from the theorem, described in METHODS and illustrated
by Fig. 3A.

Third, let y � g�h, x � g�SynS. Then det[Cy
	(p*)] � �T(p*)/

�g�h � �0.63 s/nS � 0 (Fig. 3A).
Fourth, according to the implicit function theorem, near

g�SynS
* � 150 nS and g�h

* � 4 nS there exists a unique function
g�h � f(g�SynS) such that for each pair (f(g�SynS), g�SynS), the cycle
period T is the same as at the point g�SynS � g�SynS

* , g�h � g�h
*. The

function f is smooth and has a linear approximation (the
tangent)

g� h � 
 � �g� SynS � g�*SynS� � g�*h (1)

where 
 � �[�T(p*)/�g�h]�1 � [�T(p*)/�g�SynS] � �0.077/
(�0.63) � 0.012.

Fifth, we used linear approximation (Eq. 1) to calculate the
exact compensatory functional dependency f between g�h and
g�SynS (Fig. 3B) near g�SynS

* � 150 nS, and g�h
* � 4 nS. For larger

values of g�SynS, we used the parabolic approximation of the
function g�h � f(g�SynS) based on its values near g�SynS

* � 150 nS,
and g�h

* � 4 nS. Figure 4A shows that the linear approximation
(Eq. 1) provided compensation of the period within 2% over a
wide range of varied g�SynS, which is a consequence of the fair
approximation of f by its tangent over the same range. When g�h
was determined by the functional dependency shown in Fig.
3B, the compensation of the period was nearly perfect (Fig.
4B1). Both approximate and exact compensatory covariations
of g�h and g�SynS affected the spike frequency much more than
corresponding variation of g�SynS alone (Fig. 4, A2 and B2).

Geometrically, all sets of parameters, for which period of the
system is constant, form an (n � 1)-dimensional manifold in
n-dimensional space of all model parameters. In this case, we
considered the section of the manifold determined by the
condition that all the parameters except g�SynS and g�h have their
canonical values. Near the point (g�h

*, g�SynS
* ), this section is a

smooth one-dimensional manifold, which is simply a smooth
curve (cf. Fig. 3B). Obviously, we could parameterize this
curve not by g�SynS but by g�h, and interpret the resulting
function, inverse to f, as one determining variations of g�SynS
compensating variations of g�h.

Maintaining both period and spike frequency of the network
in the face of parameter variation

According to the theory developed, to maintain both the
period, T, and the spike frequency, F, when g�SynS is varied,
compensatory covariations of at least two parameters are nec-

FIG. 3. A: period of the half-center model activity depends
smoothly and monotonically on the synaptic strength and the
maximal conductance of the hyperpolarization-activated inward
current near their canonical values g�*SynS � 150 nS and g�*h � 4
nS. Straight lines (thin) are tangents to T � T(g�h) and T �
T(g�SynS) (thick curves) at the point where g�SynS and g�h have
their canonical values (100% values; dashed line). B: function
g�h � g�h(g�SynS) (thick curve) for which the period does not
change, calculated on the basis of the linear approximation g�h �
0.012 � (g�SynS � g�*SynS) � g�*h (Eq. 1), the tangent (thin line) to g�h �
g�h(g�SynS) at the canonical value of g�SynS (dashed line).
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essary and sufficient. As one of the many potential pairs of
parameters, we chose g�h and a scaling factor, �, of the time
constant of the slow low-threshold calcium current inactiva-
tion, hCaS (see METHODS). As we have shown recently, �
strongly correlates with the burst duration of the neuron
(Olypher et al. 2006). In this case, the application of the
general algorithm was as follows.

First, selected parameters were p � (p1, p2, p3) with p1 � g�h,
p2 � �, p3 � g�SynS; p* � (p1

*, p2
*, p3

*), p1
* � 4 nS, p2

* � 1, p3
*

� 150 nS. Note that p2 is dimensionless, whereas p1, p3 are in

nanoSiemens. It is easy to check that the algorithm is not
sensitive to differences in units among parameters and/or
characteristics.

Second, specified characteristics were C1 � T(p) � T(p*),
where T(p*) � 7.91 s, and C2 � F(p) � F(p*), where F(p*) �
8.82 Hz. As earlier, a smooth dependence of T, and hence C,
from g�SynS, g�h, and � follows from the general theory. With
regards to the frequency, we approximated it by a smooth
function (Fig. 5A2).

Third, let y � (y1, y2), y1 � g�h, y2 � �, x � g�SynS. Then

det(C	y(p*)) � det��T(p*)/�g�h �T(p*)/��

�F(p*)/�g�h �F(p*)/���
� det��0.63 5.8

0.85 1.08� � � 5.61 � 0

Fourth, according to the implicit function theorem, near p*
there exists a unique (vector) function g�h � �(g�SynS), � �
�(g�SynS) such that for each triple [�(g�SynS), �(g�SynS), g�SynS],
the cycle period T, and the spike frequency F are the same as
at p*. The functions � and � are smooth. Their linear approx-
imations follow from the system


y � ��� 0.63 5.8
0.85 1.08�

�1� 0.0077
�0.0033�
x,

from where

g�h � 0.00049 � (g�SynS � 150) � 4, � � �0.00080 � (g�SynS � 150) � 1 (2)

Fifth, Fig. 5A shows that the linear approximation (Eq. 2)
provided a decent compensation for the period and spike
frequency in the interval [0.5 g�SynS

* , 1.5 g�SynS
* ]. There were no

difficulties in refining this approximation for the values of
g�SynS close to 150 nS (Fig. 6). To calculate the points on the
isomanifold for the values of g�SynS �250 nS, we used linear
approximations based on points already found on the manifold.
Note that the compensating dependency g�h � g�h(g�SynS) is not
monotonic (Fig. 6B) as in the case when only the period was
maintained (Fig. 3B). This nonmonotonicity, to be considered
in detail elsewhere, is in contrast to the monotonic and almost

FIG. 4. The effect of g�SynS variation on burst period and spike frequency in
the half-center model with and without compensating by g�h. A: linear com-
pensation. Burst period (1) and spike frequency (2) with (black) and without
(red) compensation. B: exact compensation. Burst period (1) and spike fre-
quency (2) with (black) and without (red) compensation. The horizontal lines
show the values of the period and spike frequency (gray shading indicates 2%
range of these values) for canonical values of g�SynS and g�h.

FIG. 5. The effect of g�SynS variation on
burst period and spike frequency in the half-
center model with and without compensating
by g�h and �. A: compensation with both g�h

and �. Burst period (1) and spike frequency
(2) with (black) and without (red) compensa-
tion. B: compensation with g�h only. Burst
period (1) and spike frequency (2) with (black)
and without (red) compensation. C: compensa-
tion with � only. Burst period (1) and spike
frequency (2) with (black) and without (red)
compensation. The horizontal lines show the
values of the period and spike frequency (gray
shading indicates 2% range of these values) for
canonical values of g�SynS, g�h, and �.
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linear compensating dependency � � �(g�SynS) (Fig. 6C).
Figure 7 shows that the activity in the compensated model is
very close to the activity of the canonical model.

For two characteristics, the period and the spike frequency,
the isomanifold in n-dimensional parameter has the dimension
n � 2. We showed that the section of this isomanifold,
determined by the condition that all parameters except g�SynS,
g�h, and � had their canonical values, was a smooth curve. We
parameterized this curve by g�SynS and interpreted the resulting
parameterization as variations of g�h and � compensating vari-
ations of g�SynS. Equation 2 is a linear approximation to that
parameterization. We could of course consider g�h as a free
parameter and parameterize the same smooth curve with g�h.
That would give us variations of g�SynS and � compensating
variations of g�h.

To explore the individual contributions of g�h and � to the
approximate, linear compensation, we first made simulations
with g�h varied according to 
g�h � 0.00049 �
g�SynS and fixed
g�h. Figure 5B shows that g�h compensated both the period and
the spike frequency. Indeed, from the partial derivatives
�T(p*)/�g�h � �0.63, and �F(p*)/�g�h, it followed, that 1%

increase of g�h should lead to 0.32% decrease and 0.39%
increase of T and F, respectively. Next we made simulations
with fixed g�h � 4 nS and � varying according to 
� �
�0.00080 �
g�SynS (Fig. 5C). Corresponding partial derivatives
implied a notably greater effect of � on T (2.9% increase) than
on F (0.49% increase) of F with 1% increase of �. For small
deviations of g�SynS from its canonical value, the contributions
of g�h and � are approximately independent and proportional to
changes in g�SynS, showing that the compensation works in
linear approximation.

D I S C U S S I O N

In this study, we developed a general description of param-
eter combinations for which specified characteristics of neuro-
nal or network activity are constant. We showed that near a
generic point in the parameter space there are infinitely many
such combinations and that they form a smooth manifold,
which we have called the isomanifold. This isomanifold can be
extended as long as the gradients of characteristics are defined
and independent. All possible variations of parameters com-
pensating each other are simply all possible charts of the same
isomanifold. The number of compensating parameters (but not
parameters themselves) is fixed and equal to the codimension
of the isomanifold, which is in turn equal the number of the
independent characteristics maintained. The algorithm that we
developed and described here shows how to find compensatory
functional dependencies between parameters numerically.
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T= 9.74 s,  F= 9.16 Hz   
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FIG. 7. Membrane potentials of the 2 reciprocally inhibitory neurons in the
half-center model with and without the compensation of the the burst period
and spike frequency. A: canonical model; g�SynS � 150 nS, g�h � 4 nS, � � 1.
B: canonical model with the 3-times increased g�SynS; g�SynS � 450 nS, g�h � 4
nS, � � 1. C: canonical model, in which the threefold increase g�SynS was
compensated by the changes of g�h and � (Fig. 6); g�SynS � 450 nS, g�h � 3.56
nS, � � 0.75.
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FIG. 6. The isomanifold in the 3-parameter space on which the burst period
and spike frequency in the half-center model is the same as for the canonical
values of the parameters. A: isomanifold, which is a curve, and its projection
(gray) onto the plane (g�h,�). B: function g�h � g�h(g�SynS) (thick curve) is the
projection of the isomanifold from A to the plane (g�h, g�SynS). Note that the
linear approximation g�h � 0.00049 � (g�SynS � g�SynS

* ) � g�h
* (Eq. 2), the tangent

(thin line) to g�h � g�h(g�SynS) at the canonical value of g�SynS (vertical dashed
line), is not accurate for g�SynS � 250 nS. C: function � � �(g�SynS) (thick
curve) is the projection of the isomanifold from A to the plane (�, g�SynS). Note
that the linear approximation � � 0.00049 � (g�SynS � g�SynS

* ) � �* (Eq. 2), the
tangent (thin line) to � � �(g�SynS) at the canonical value of g�SynS (vertical
dashed line), is accurate for all values of g�SynS considered.
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Our approach requires a smooth dependency of activity
characteristics on parameters. Such smoothness is often intrin-
sic to neuronal systems when they are in stable functional
states. The conclusions about how parameters compensate each
other, developed in this study, can thus be used even without
regard to the specific mathematical model describing a partic-
ular neuron or neuronal network.

The application of the implicit function theorem to finding
level sets of a characteristic of neuronal activity is not new. In
particular, it is the basis of the parameter continuation tech-
nique implemented in dynamical systems software packages, like
XPP-AUTO (Ermentrout 2002), and CONTENT (Kuznetsov et al.
1996). The theorem, when its conditions are met, guarantees
the existence and uniqueness of a continuation and provides a
linear approximation to compensatory functions which can be
refined. In practice, parameter continuation is mostly used for
finding isocurves, i.e., level sets of a characteristic in a plane of
two parameters. Here, we consider a general case with multiple
characteristics and parameters, focus on the geometrical pic-
ture provided by the theorem, and most importantly, connect
the theory with the general problem of neuronal variability.

Predictions

Our general approach allows us to formulate several predic-
tions related to the analysis of the homeostatic regulation,
model tuning, and data analysis. Specifically, if a particular
homeostatic mechanism maintains m independent characteris-
tics of neuronal activity, then our approach predicts that at least
m parameters must be changed as a response to perturbation in
one or more other parameters of the system. Correspondingly,
if during model tuning, one parameter is updated, then to return
to target values of m characteristics of the model activity, at
least m other parameters have to be readjusted.

Our study shows that correlations between pairs of param-
eters in a database of simulated models with similar behavior
are generically rare but nevertheless possible. They are rare
because a correlation between two parameters adds an extra
constraint on the set of parameter combinations for which
characteristics remain constant. Geometrically, this constraint
means that an isomanifold on which characteristics are con-
stant must belong to a hypersurface orthogonal to the hyper-
plane of the two parameters. On the other hand, we have
demonstrated an almost perfect linear correlation between the
two parameters � and g�SynS in the half-center oscillator model
explored here (Fig. 6C) under the condition that the burst
period and spike frequency in the model remain constant with
variations of these two parameters and g�h.

Our theory also implies that a biological control mechanism
that coregulates (linear correlation) different ion channels (con-
ductance parameters), regardless of their functional relation
to one another, may effectively limit the number of activity
characteristics that can be maintained. Effectively the param-
eters become nonindependent in regulating activity. In neurons
of the lobster stomatogastric ganglion, linear correlation be-
tween the conductances of IA and Ih have been observed
(MacLean et al. 2003; Schulz et al. 2006). Overexpression of
IA by mRNA injection leads to corresponding increases in Ih
expression and relative constancy of cell activity (burst period
and spike frequency). One is tempted to conclude from our
analysis that such correlation means that these currents exclu-

sively control burst activity. We would argue that rather than
indicating that other parameters do not influence burst activity,
it is more likely that the epigenetic mechanism was selected by
evolution as more efficient than other potential compensatory
mechanisms involving other parameters. At the same time such
a mechanism can limit the system’s flexibility. Perhaps such
epigenetic homeostatic mechanisms are useful, however, for
setting baseline activity. Modulation may break such linkages
by affecting one current more than the other either by channel
modification or by directly affecting gene expression, and thus
alter this homeostatically set baseline activity (see, e.g.,
Khorkova and Golowasch 2007). Moreover, combinations of
such epigenetic mechanisms that effect different correlations
between the two parameters may restore flexibility (see, e.g.,
Brezina et al. 1996).

Relation to previous work

Our approach extends sensitivity analysis (MacLean et al.
2005; Nygren et al. 1998; Olsen et al. 1995; Paulsen et al.
1982; Weaver et al. 2007), compliments the “brute force”
approach (Achard and De Schutter 2006; Goldman et al. 2001;
MacLean et al. 2005; Prinz et al. 2004), and is “orthogonal” to
bifurcational analysis (Izhikevich 2006). In sensitivity analysis,
sensitivities determine approximately how much one parameter
should change from its original value to compensate a devia-
tion of another parameter from its original value. Sensitivities
approximate partial derivatives of a characteristic at a point of
interest in the parameter space. When this approximation is
accurate, sensitivity analysis provides a linear approximation
to actual compensatory covariations of parameters. Tradition-
ally, the maintenance of only one activity characteristic by
compensatory covariations of a pair of parameters has been
considered. Here we consider multiple characteristics and pa-
rameters and show how to reveal exact compensatory func-
tional dependencies between parameters.

The brute force approach was critical in revealing the fact
that neuronal and network models with multiple sets of param-
eter can have similar behavior (Goldman et al. 2001; Prinz et
al. 2004). In particular, the sampling of the large volume of
parameter space proved that these parameter sets can be very
different. Our approach is local. We start with one point in the
parameter space and explore its vicinity. The payoff is that we
get complete information on these parameter sets near the
point. Our simulations, described here, show that the vicinity in
which our analysis is applicable can be reasonably large (cf.
Fig. 4B1). Furthermore, the isomanifolds the existence and
uniqueness of which are established locally can be extended
out of that vicinity.

Sampling the parameter space of models has also been used
for analyses of the structure of parameter sets for which a
system’s behavior is the same. For example, Goldman et al.
(2001), MacLean et al. (2005), and Taylor et al. (2006) found
that these sets have often a layered structure. This observation
is in accord with the general picture developed here. Indeed,
manifolds corresponding to close characteristic values should
not intersect because the intersection would mean that for the
same set of parameters, activity characteristics would be dif-
ferent. From the layered structure, Goldman et al. (2001)
deduced that there are sensitive and insensitive directions in the
parameter space. In the sensitive direction, a characteristic
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changes most of all, whereas in the insensitive direction, it
changes least of all. Our analysis puts these observations into
a rigorous mathematical framework. Namely, if the smooth
manifold of parameters is one dimensional, then at every point
it has a gradient, a vector with components that are partial
derivatives of the characteristic with respect to parameters. By
definition, the gradient shows a direction, in which the char-
acteristic changes most of all, or the most sensitive direction.
Directions, orthogonal to the gradient, are obviously insensi-
tive directions.

Achard and De Schutter (2006), who simulated a multicom-
partmental model, showed that once there is a point in the
parameter space with values close to the target values of
the specified characteristics then in the vicinity of this point
there are other points where the model has characteristics that
are also close to those target values. From our analysis, it
follows that near a generic point there must be a whole
manifold of parameters for which the characteristics are the
same.

Our approach is “orthogonal” to bifurcational analysis,
which is about small parameter changes leading to significant
changes in dynamics (activity). The focus of our approach is to
seek variations of parameters that have no or small effect on
model dynamics. Given that characteristics of the dynamics
change drastically when a system experiences a transition to
another state, linear approximations to compensatory covaria-
tions of parameters work better the further parameters are from
such critical values. Figure 8A illustrates such a transition from
the alternating bursting to spiking in the model considered
here.

Half-center oscillator from the leech heartbeat CPG

To illustrate the method, we applied it to a model of the
smallest functional network of the leech heartbeat CPG con-
sisting of two mutually inhibitory neurons. Motivated by the
experimental finding by Tobin and Calabrese (2005) (Fig. 1),
we varied the maximal conductance, g�SynS, of the spike-
mediated inhibition between the neurons and explored how
other parameters might compensate variations of g�SynS. Our
choice of the maximal conductance of the hyperpolarization-
activated current, g�h, and the scaling factor, �, of the inactiva-
tion time constant of the slow low-threshold calcium current as
potential compensating parameters was influenced by our re-
cent studies of the role of these parameters in shaping pattern
of the activity in this particular network (Olypher et al. 2006;
Sorensen et al. 2004) and the analysis of covariations of g�h and
g�SynS in hybrid half-center oscillators formed from stomato-
gastric neurons (Grashow and Marder 2006).

Although extensive model simulations and physiological
intuition strongly suggested that these three parameters might
change in a coordinated way to maintain the burst period and
spike frequency, it was not clear that such maintenance was
possible in the model, given the complex nonlinear interactions
between the parameters and characteristics. The theory pre-
sented in this study firmly establishes the existence and unique-
ness of such compensatory functional dependencies.

We generated here a testable prediction on concordant
changes of g�h, g�SynS, and �. This prediction can be verified in
a hybrid system consisting of a living, pharmacologically
isolated, heart interneuron connected with artificial synapses to
a model heart interneuron running in real-time (Olypher et al.
2006; Sorensen et al. 2004). In this setting, the endogenous
hyperpolatization-activated current and calcium current of the
living interneuron can be pharmacologically blocked and sub-
stituted by corresponding artificial conductances with regulated
g�h, g�SynS, and �.

Applicability and perspectives of the method

In the method developed here, characteristics and the pa-
rameters maintaining them can have arbitrary nature with
regards to units and origin. In particular, a close analysis of the
algorithm shows that at every step only terms with similar units
are summed. Both parameters and characteristics can originate
in ordinary differential equations, partial differential and inte-
gral equations, mappings, multicompartmental models, or con-
tinuous medium network models. The main requirement is that
the characteristics considered must smoothly depend on pa-
rameters. However, even this requirement can be lifted, if not
the characteristic itself, but its smooth approximation is con-
sidered and if this approximation depends on parameters
smoothly. For example, in the interval [0.5g�SynS, 1.5g�SynS], the
number of spikes in the noncompensated model explored here
increased from 33 to 36 meaning that there were two points
where the partial derivative of the spike frequency with respect
to g�SynS lost its continuity. However, in that interval the
compensated spike frequency was �2% different from the
canonical value indicating that the compensation worked.

The accuracy of the linear approximation of the isomanifold
depends on the accuracy of the estimates of partial derivatives
of characteristics with respect to parameters. Figure 8B illus-
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FIG. 8. When the method does not work. A: membrane potentials of the 2
reciprocally inhibitory neurons in the half-center model with g�L � 9 nS and
EL � �55 mV. The alternating bursting is not stable. B: canonical model
with g�L � 7.7 nS and EL � �57.45 mV. The derivative of the period with
respect to the reversal potential of the leak current, EL, is poorly defined at the
point EL � �57.45 mV; means � SD are plotted.
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trates a case where the period in the model for a particular
choice of the leak current parameters is so variable that a
reliable estimate of the period’s partial derivative with respect
to the reversal potential of the leak current, EL, is impossible.

Accurate estimates of partial derivatives of characteristics do
not guarantee that specific parameters can be considered as
compensated or compensating. The critical condition is formu-
lated in the step 3 of the algorithm. If the corresponding
determinant is equal to zero within the numeric accuracy
employed, then the set of compensated and compensating
parameters must be rearranged/reduced.

A particular numeric method for finding an isomanifold
must be chosen depending on the problem at hand. For exam-
ple, for finding isosurfaces there are effective algorithms de-
veloped for data visualization, such as the Marching Cubes
algorithm and its generalizations (Bhaniramka et al. 2004). In
the case of multiple characteristics, the intersection of the
isosurfaces must be considered. For this case, there may be
specific and effective algorithms as well; however, we are not
aware of such algorithms.

In this study, we used the implicit function theorem for
revealing functional relations between finite-dimensional vec-
tors of parameters. The theorem has a more general form,
defined for functional spaces (Wouk 1979) with the premises
and statements of the theorem reformulated correspondingly.
The theorem states the local existence and uniqueness of an
operator (nonlinear) for compensatory changes not of param-
eters but of functions affecting specified (functional) charac-
teristics. In theoretical analyses, this general form of the
implicit function can be useful in proving existence and
uniqueness of implicitly defined connections between various
functions affecting neuronal and network activity.

A P P E N D I X A : I M P L I C I T F U N C T I O N T H E O R E M

With two or more characteristics to be maintained, the intersection
of the isosurfaces of these characteristics has to be considered. The
existence, uniqueness, dimension, and structure of this intersection in
a high dimensional space is not obvious, and the Implicit Function
Theorem provides the means of determining them. When the theorem
holds, it states, in particular, that locally, the intersection is a manifold
of a specific dimension. Technically, it means, that the intersection
can be mapped by mutually consistent local charts each of which is
isomorphic to a Euclidian space.

Theorem (Rudin 1976). Consider a mapping F:U3Rn defined in a
neighborhood U of point (x0, y0) � Rn�m, where m and n are natural
numbers. Let F be continuously differentiable, F � C(p)(U), F(x0,
y0) � 0, the Jacobian of F with respect to y is an invertible matrix,
det[Fy

	(x0, y0)] � 0. Then there exists the m � n dimensional box I �
Ix
m  Iy

n � U, where Ix
m � {x � Rm:�x � x0� � 	}, Iy

n � {y � Rn:�y �
y0� � }, and 	 and  are some positive numbers, and such a mapping
F � C(p)(Ix

m  Iy
n) that F(x, y) � 0N y � f(x) for each point (x, y) �

Ix
m  Iy

n, and f 	(x0) � �[Fy
	(x0, y0)]�1[Fx

	(x0, y0)].
Here, C(p)(U) is a standard notation for the space of functions,

which are continuous and have continuous partial derivatives up to
order p in U; Fy

	(x0, y0), and Fx
	(x0, y0) are matrices made of partial

derivatives of the vector function F with respect to components of
vectors y and x in (x0, y0).

A P P E N D I X B : S M O O T H N E S S O F T H E P E R I O D

Theorem (Hartman 1964). Let x, F be real vectors. Let F (x, �) be
continuous for small ��� and for x on some d – dimensional domain
and have continuous partial derivatives with respect to the compo-

nents of x. When � � 0, let x	 � F (x, �) have a nonconstant solution
x � g0(t) of period p0 � 0 such that the linearized system y	 � A(t)y,
where A(t)' �xF [g0(t), 0], has exactly one characteristic root equal
to 1. Then, for small ���, the system x	 � F (x, �) has a unique
periodic solution x � x (t, �) with a period p(�), depending on �, such
that x(t, �) is near g0 (t) and the period p(�) is near p0; furthermore
x(t, �), p(�) are continuous, x(t, 0) � g0(t), and p(0) � p0.

Further analysis shows that when F (x, �) is differentiable, x(t, �),
p(�) are also differentiable (Hartman 1964).

A P P E N D I X C : P E R I O D S E N S I T I V I T I E S

T A B L E 1 .

Name Canonical Value Derivative Relative Sensitivity, %

EK �0.07 414.0000 3.6637
ESyn �0.0625 �136.0000 �1.0746
g�p 7 1.1000 0.9735
EL �0.0635 �121.0000 �0.9714
g�K1 100 �0.0510 �0.6448
�h,CaS (��) 1 5.8000 0.7332
g�K2 80 �0.0546 �0.5522
g�L 9.9 �0.4000 �0.5006
g�SynS 150 0.0077 0.1460
g�CaS 3.2 1.0300 0.4167
ECa 0.135 20.0000 0.3413
g�h 4 �0.6300 �0.3186
ENa 0.045 44.7000 0.2543
Eh �0.021 �82.2000 �0.2182
�m,h 1 1.4400 0.1820
B 10 �0.1280 �0.1618
g�SynS 30 0.0138 0.0523
g�CaF 5 0.0602 0.0381
g�Na 200 �0.0010 �0.0258
�m,CaS 1 0.1610 0.0204
�2 0.011 7.7200 0.0107
�A 0.2 �0.0404 �0.0010
ASynS �1000 0.0000 �0.0005
�1 0.002 0.7080 0.0002
Iinject 0 11.8000 n/a
sm,h 0 308.0000 n/a
sm,CaS 0 90.0000 n/a
sh,CaS 0 75.0000 n/a
g�KA 80 n/a n/a

Partial derivatives and relative sensitivities of the period of the heart
interneuron half-center model to parameters. Subscripts “m,h”, “m,CaS”,
“h,CaS” stand for the activation of Ih current and activation and inactivation of
ICaS current, respectively. Parameters sm,h, sm,CaS, and sh,CaS are the shifts of the
corresponding activation and inactivation curves along the axis of the mem-
brane potential; �m,h and �m,CaS are the scaling factors of the corresponding
time constants, analogous to �h,CaS, which in this study was denoted simply by
�. Parameters, used in this study were �, g�SynS, and g�h (bold). Most of the other
parameters are maximal conductances, g����, and reversal potentials, E��� of
ionic currents; see further details in (Hill et al. 2001). Entries were sorted from
the largest absolute relative sensitivity to the smallest. For parameters sm,h,
sm,CaS, and sh,CaS with zero canonical values, relative changes were not defined.
The only parameter for which we did not evaluate a partial derivative was g�KA,
the maximal conductance of a fast, transient K� current. Likely, the canonical
value of this parameter is close to a bifurcational value.
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