from models.LIFACnoise import LifacNoiseModel from parser.CellData import CellData from experiments.Baseline import get_baseline_class from experiments.FiCurve import get_fi_curve_class from fitting.Fitter import Fitter from fitting.ModelFit import get_best_fit, ModelFit import time import os import argparse import numpy as np from my_util.helperFunctions import plot_errors import multiprocessing as mp SAVE_DIRECTORY = "./results/final_sam/" SAVE_DIRECTORY_BEST = "./results/final_sam_best/" # SAVE_DIRECTORY = "./results/ref_and_tau/no_dend_tau/" # SAVE_DIRECTORY_BEST = "./results/ref_and_tau/ndt_best/" # [vs, sc, cv, isi_hist, bursty, f_inf, f_inf_slope, f_zero, f_zero_slope, f0_curve] ERROR_WEIGHTS = (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) def main(): parser = argparse.ArgumentParser() parser.add_argument("--cell", help="folder (with .dat files) containing the cell data") args = parser.parse_args() if args.cell is not None: cell_data = CellData(args.cell) cell_name = os.path.split(cell_data.get_data_path())[-1] if os.path.exists(SAVE_DIRECTORY + "/" + cell_name + "/"): print(cell_name, "already done") return start_parameters = [p for p in iget_start_parameters()] fit_cell_parallel(cell_data, start_parameters) quit() # test_single_cell("data/invivo/2010-11-08-al-invivo-1/") test_single_cell("data/final/2012-12-21-am-invivo-1/") # start_parameters = [p for p in iget_start_parameters()] # cell_data = CellData("data/invivo_bursty/2014-03-19-ae-invivo-1/") # fit_cell_parallel(cell_data, start_parameters) def test_single_cell(path): cell_data = CellData(path) start_parameters = [p for p in iget_start_parameters()] for i, p in enumerate(start_parameters): fitter = Fitter() fitter.set_data_reference_values(cell_data) fmin, res_par = fitter.fit_routine_no_dend_tau_and_no_ref_period(p, ERROR_WEIGHTS) cell_path = os.path.split(cell_data.get_data_path())[-1] error = fitter.calculate_errors(model=LifacNoiseModel(res_par)) save_path = SAVE_DIRECTORY + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(i, sum(error)) save_fitting_run_info(cell_data, res_par, p, plot=True, save_path=save_path) print("Done with start parameters {}".format(str(i))) def fit_cell_base(parameters): # parameter = (cell_data, start_parameter_index, start_parameter) time1 = time.time() fitter = Fitter() fitter.set_data_reference_values(parameters[0]) fmin, res_par = fitter.fit_routine(parameters[2], ERROR_WEIGHTS) cell_data = parameters[0] cell_name = os.path.split(cell_data.get_data_path())[-1] error = fitter.calculate_errors(model=LifacNoiseModel(res_par)) save_path = SAVE_DIRECTORY + "/" + cell_name + "/start_parameter_{:}_err_{:.2f}/".format(parameters[1], sum(error)) save_fitting_run_info(parameters[0], res_par, parameters[2], plot=True, save_path=save_path) plot_errors(fitter.errors, save_path) fit = ModelFit(save_path) fit.generate_master_plot(save_path) time2 = time.time() del fitter print("Time taken for " + cell_name + "\n and start parameters ({:}): {:.2f}s thread time".format(parameters[1]+1, time2 - time1) + "\n error: {:.2f}".format(sum(error))) def fit_cell_parallel(cell_data, start_parameters): cell_path = os.path.basename(cell_data.get_data_path()) save_path_cell = os.path.join(SAVE_DIRECTORY, cell_data.get_cell_name()) print(cell_path) core_count = mp.cpu_count() pool = mp.Pool(core_count - 1) parameters = [] for i, p in enumerate(start_parameters): parameters.append((cell_data, i, p)) time1 = time.time() pool.map(fit_cell_base, parameters) time2 = time.time() print("Time taken for all start parameters ({:}): {:.2f}s".format(len(start_parameters), time2-time1)) del pool del cell_data best_fit = get_best_fit(save_path_cell) best_fit.generate_master_plot(SAVE_DIRECTORY_BEST) best_fit.generate_master_plot(SAVE_DIRECTORY) def iget_start_parameters(): # mem_tau, input_scaling, noise_strength, dend_tau, # expand by tau_a, delta_a ? mem_tau_list = [0.001] input_scaling_list = [80] noise_strength_list = [0.01] dend_tau_list = [0.002] delta_a_list = [0.01, 0.03, 0.065] tau_a_list = [0.02, 0.04] ref_time_list = [0.00065, 0.0012] for mem_tau in mem_tau_list: for input_scaling in input_scaling_list: for noise_strength in noise_strength_list: for dend_tau in dend_tau_list: for delta_a in delta_a_list: for tau_a in tau_a_list: for ref_time in ref_time_list: yield {"mem_tau": mem_tau, "input_scaling": input_scaling, "noise_strength": noise_strength, "dend_tau": dend_tau, "delta_a": delta_a, "tau_a": tau_a, "refractory_period": ref_time} def save_fitting_run_info(cell_data, parameters, start_parameters, plot=False, save_path=None): if save_path is not None: if not os.path.exists(save_path): os.makedirs(save_path) if save_path is None: return with open(save_path + "parameters_info.txt", "w") as file: file.writelines(["start_parameters:\t" + str(start_parameters), "\nfinal_parameters:\t" + str(parameters)]) model = LifacNoiseModel(parameters) eod_frequency = cell_data.get_eod_frequency() data_baseline = get_baseline_class(cell_data) c_bf = data_baseline.get_baseline_frequency() c_vs = data_baseline.get_vector_strength() c_sc = data_baseline.get_serial_correlation(1) c_cv = data_baseline.get_coefficient_of_variation() c_burst = data_baseline.get_burstiness() data_fi_curve = get_fi_curve_class(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path()) c_f_inf_slope = data_fi_curve.get_f_inf_slope() c_f_inf_values = data_fi_curve.f_inf_frequencies c_f_zero_slope = data_fi_curve.get_f_zero_fit_slope_at_straight() c_f_zero_values = data_fi_curve.f_zero_frequencies if c_f_inf_slope < 0: contrasts = np.array(cell_data.get_fi_contrasts()) * -1 else: contrasts = np.array(cell_data.get_fi_contrasts()) model_baseline = get_baseline_class(model, eod_frequency, trials=15) m_bf = model_baseline.get_baseline_frequency() m_vs = model_baseline.get_vector_strength() m_sc = model_baseline.get_serial_correlation(1) m_cv = model_baseline.get_coefficient_of_variation() m_burst = model_baseline.get_burstiness() model_ficurve = get_fi_curve_class(model, cell_data.get_fi_contrasts(), eod_frequency, trials=60) m_f_infinities = model_ficurve.get_f_inf_frequencies() m_f_zeros = model_ficurve.get_f_zero_frequencies() m_f_infinities_slope = model_ficurve.get_f_inf_slope() m_f_zero_slope = model_ficurve.get_f_zero_fit_slope_at_straight() np.save(os.path.join(save_path, "model_fi_inf_values.npy"), np.array(m_f_infinities)) np.save(os.path.join(save_path, "cell_fi_inf_values.npy"), np.array(c_f_inf_values)) np.save(os.path.join(save_path, "model_fi_zero_values.npy"), np.array(m_f_zeros)) np.save(os.path.join(save_path, "cell_fi_zero_values.npy"), np.array(c_f_zero_values)) with open(os.path.join(save_path, "cell_data_path.txt"), "w") as f: path = cell_data.get_data_path() + "\n" f.write(path) if c_f_inf_slope < 0: model_ficurve.stimulus_values = contrasts * -1 # print("EOD-frequency: {:.2f}".format(cell_data.get_eod_frequency())) # print("bf: cell - {:.2f} vs model {:.2f}".format(c_bf, m_bf)) # print("vs: cell - {:.2f} vs model {:.2f}".format(c_vs, m_vs)) # print("sc: cell - {:.2f} vs model {:.2f}".format(c_sc[0], m_sc[0])) # print("cv: cell - {:.2f} vs model {:.2f}".format(c_cv, m_cv)) # print("f_inf_slope: cell - {:.2f} vs model {:.2f}".format(c_f_inf_slope, m_f_infinities_slope)) # print("f infinity values:\n cell -", c_f_inf_values, "\n model -", m_f_infinities) # # print("f_zero_slope: cell - {:.2f} vs model {:.2f}".format(c_f_zero_slope, m_f_zero_slope)) # print("f zero values:\n cell -", c_f_zero_values, "\n model -", m_f_zeros) if save_path is not None: with open(save_path + "value_comparision.tsv", 'w') as value_file: value_file.write("Variable\tCell\tModel\n") value_file.write("baseline_frequency\t{:.2f}\t{:.2f}\n".format(c_bf, m_bf)) value_file.write("vector_strength\t{:.2f}\t{:.2f}\n".format(c_vs, m_vs)) value_file.write("serial_correlation\t{:.2f}\t{:.2f}\n".format(c_sc[0], m_sc[0])) value_file.write("Burstiness\t{:.2f}\t{:.2f}\n".format(c_burst, m_burst)) value_file.write("coefficient_of_variation\t{:.2f}\t{:.2f}\n".format(c_cv, m_cv)) value_file.write("f_inf_slope\t{:.2f}\t{:.2f}\n".format(c_f_inf_slope, m_f_infinities_slope)) value_file.write("f_zero_slope\t{:.2f}\t{:.2f}\n".format(c_f_zero_slope, m_f_zero_slope)) if plot: # plot model images model_baseline.plot_baseline(save_path) model_baseline.plot_interspike_interval_histogram(save_path) model_baseline.plot_isi_histogram_comparision(data_baseline.get_interspike_intervals(), model_baseline.get_interspike_intervals(), save_path) model_baseline.plot_serial_correlation(6, save_path) model_ficurve.plot_fi_curve(save_path) model_ficurve.plot_fi_curve_comparision(data_fi_curve, model_ficurve, save_path) if __name__ == '__main__': main()