import numpy as np from numba import jit def line(x, m, c): return m*x + c def inverse_line(x, m, c): return (x-c)/m def clipped_line(x, m, c): return np.clip(m*x + c, 0, None) def inverse_clipped_line(x, a, b): if clipped_line(x, a, b) == 0: raise ValueError("Value undefined in inverse_clipped_line.") return (x-a)/b def exponential_function(x, a, b, c): return (a-c)*np.exp(-x/b)+c def upper_boltzmann(x, f_max, k, x_zero): return f_max * np.clip((2 / (1+np.power(np.e, -k*(x - x_zero)))) - 1, 0, None) def full_boltzmann(x, f_max, f_min, k, x_zero): return (f_max-f_min) * (1 / (1 + np.power(np.e, -k * (x - x_zero)))) + f_min def full_boltzmann_straight_slope(f_max, f_min, k, x_zero=0): return (f_max-f_min)*k*1/2 def derivative_full_boltzmann(x, f_max, f_min, k, x_zero): res = (f_max - f_min) * k * np.power(np.e, -k * (x - x_zero)) / (1 + np.power(np.e, -k * (x - x_zero))**2) return res def inverse_full_boltzmann(x, f_max, f_min, k, x_zero): if x < f_min or x > f_max: raise ValueError("Value undefined in inverse_full_boltzmann") return -(np.log((f_max-f_min) / (x - f_min) - 1) / k) + x_zero def gauss(x, a, x0, sigma): return a*np.e**(-(x-x0)**2/(2*sigma**2)) def two_gauss(x, a_1, x0_1, sigma_1, a_2, x0_2, sigma_2): return a_1 * np.e ** (-(x - x0_1) ** 2 / (2 * sigma_1 ** 2)) + a_2 * np.e ** (-(x - x0_2) ** 2 / (2 * sigma_2 ** 2)) @jit(nopython=True) # useful in less that 1000x10000 calls (1000 tests with 10k data points) def rectify(x): if x < 0: return 0 return x