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The gymnotiform weakly electric fish Apteronotus leptorhynchus can capture prey using electrosensory cues that are dominated by

low temporal frequencies. However, conventional tuning curves predict poor electroreceptor afferent responses to low-frequency

stimuli. We compared conventional tuning curves with information tuning curves and found that the latter predicted substantially

improved responses to these behaviorally relevant stimuli. Analysis of receptor afferent baseline activity showed that negative

correlations reduced low-frequency noise levels, thereby increasing information transmission. Multiunit recordings from receptor

afferents showed that this increased information transmission could persist at the population level. Finally, we verified that this

increased low-frequency information is preserved in the spike trains of central neurons that receive receptor afferent input. Our

results demonstrate that conventional tuning curves can be misleading when certain noise reduction strategies are used by the

nervous system.

The identification of behaviorally relevant neural codes is a principal
goal of studies of sensory processing systems1,2. Progress toward this
goal requires that neural codes be understood from the organism’s
point of view, or in a more limited sense, from the postsynaptic cell’s
point of view. Experimental studies verifying that postsynaptic cells
actually decode information encoded by a particular presynaptic
activity pattern are needed in order to further our understanding of
these codes3. Various methodologies have been used to specify which
aspects of a stimulus are represented in a single neuron’s pattern of
activity or spike train. These methods range from simple measures
of changes in firing frequency4 or spike count5 in response to stimula-
tion, to more complex input-output measures such as the transfer
function6–9. The latter is related to the mean stimulus waveform that
triggers an action potential: the so-called spike-triggered average or
reverse correlation10, which is also widely used11,12. Most recently,
information-theoretic techniques have gained acceptance as efficient
methods for quantifying the amount of information about a stimulus
that is carried in a neuron’s spike train1,2. These techniques quantify the
amount of information available for decoding by postsynaptic cells1

and have the advantage of incorporating the effects of neural dynamics,
including bursting13, oscillations14 and chaos15.
Here we show that correlations in a single neuron’s spike train are

important in shaping its information transmission properties. We
examined patterns of neural activity in a well-studied model system,
weakly electric fish. These fish reliably detect weak low-frequency
signals generated by prey organisms16. Conventional encoding mea-
sures, such as transfer function, indicate that receptor afferent tuning is
poorly matched to these important signals. However, information-
theoretic measures of tuning indicate that the afferents respond well to

prey-like stimuli. We provide the first experimental proof that spike
train correlations lead to increased information about low-frequency
signals by reducing low-frequency noise, as predicted by previous
modeling studies17,18. By simultaneously recording from pairs of
receptor afferents, we show that this noise reduction is preserved across
the afferent population. Finally, by recording from postsynaptic cells,
we verify that the increased information about low-frequency stimuli is
actually decoded and made available to cells at higher levels of the
processing hierarchy.

RESULTS

Conventional tuning predicts poor responses to prey

We recorded activity from a class of sensory neurons, electroreceptor
afferents, in the gymnotiform weakly electric fish A. leptorhynchus.
These animals produce a continuous electric organ discharge (EOD)
that functions as a carrier signal. Behaviorally relevant stimuli include
amplitude modulations of this carrier ranging from a few hertz to in
excess of 100 Hz. Different stimulus categories can be associated with
unique spatiotemporal characteristics16,19,20. In addition, specific CNS
subdivisions (spatiotopic maps) are clearly linked to processing of
information relevant to specific behavioral contexts20,21. This study
focuses on the animal’s ability to detect weak low-frequency (o30 Hz)
amplitude modulations of the EOD caused by prey organisms16. This,
as well as previous work9,22 using conventional measures of receptor
afferent tuning, all indicate a substantial mismatch between the fre-
quency content of prey stimuli and receptor afferent tuning: receptor
afferents are described as being most sensitive to frequencies far higher
than those typically produced by prey (Fig. 1a,b). We characterized
their tuning both in terms of a commonly used23 phase-locking
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measure, vector strength (Fig. 1a; see Methods), as well as the gain
curve from transfer function analysis (Fig. 1b). Both measures showed
extremely poor responsiveness to low-frequency stimuli. These results
seemingly contradict the frequent observation that sensory system
tuning optimizes sensitivity to behaviorally important stimuli1,24 and
raise the question of how these animals can efficiently capture prey
given this apparent tuning mismatch.

Information tuning predicts good responses to prey

One can also use information theory to estimate neural tuning1. We
determined information tuning curves using band-limited random
amplitude modulations (RAMs), and we quantified responses as the
stimulus–spike train coherence, a measure related to the output signal-
to-noise ratio1. Coherencemeasures the fraction of the stimulus that can
be decoded by linear means (see Methods). Conventional tuning curves
can also be obtained from transfer function analysis of responses to
RAM stimuli; these predicted poor responses to low-frequency stimuli
similar to those seen with sinusoidal stimuli (Fig. 2). However,
information tuning curves showed a broadband response (Fig. 2)
with a peak well-matched to the peak frequency (25 Hz) produced by
prey, as estimated from analysis of actual prey capture behavior16.

Negative correlations reduce low-frequency noise

We now provide an explanation of this large difference between tuning
curves determined by coherence versus transfer function analysis.
Although both took into account the input-output relationship, only
coherence was sensitive to the intrinsic dynamics of the system, because
the spike train power spectrum was used in its calculation (see
Methods). Electroreceptor afferent spike trains showed patterning, as
their interspike intervals (ISIs) were not randomly distributed. Succes-
sive interspike intervals were, in fact, negatively correlated (Fig. 3a,
inset). Modeling studies have shown that these negative ISI correlations
act to regularize the spike train17,18. As predicted, this regularization
reduced the low-frequency power of electroreceptor afferent spike trains
as shown by the power spectrum of their spontaneous activity (Fig. 3a).
This reduction in low-frequency power is equivalent to reducing

low-frequency noise. This noise shaping increases the potential for
information transfer at low frequencies18.
In order to verify the role of these ISI correlations in shaping the

receptor afferent power spectrum, we randomly shuffled the ISI
sequence (see Methods). This removes ISI correlations (Fig. 3a, inset)
and increases low-frequency power (Fig. 3a). This confirms that
removal of electroreceptor afferent intrinsic ISI correlations leads to
higher power at low frequencies, thereby increasing the effective low-
frequency noise level. We compared information tuning curves of
normal responses to RAM stimuli (Fig. 3b) with tuning curves from
data with ISIs randomly shuffled (Fig. 3b) to determine the conse-
quences of this increased noise level for information transfer. Removal
of ISI correlations greatly attenuated the low-frequency coherence, as
expected, given that ISI shuffling increases low-frequency noise. In
addition, the peak of the information tuning curve was shifted to higher
frequencies (B60 Hz), closer to the peak frequencies of conventional
tuning curves. Thus, electroreceptor afferent ISI correlations underlie
the differences in estimates of frequency tuning that appear when the
analysis is based on coherence rather than transfer function.

The noise reduction persists at the population level

This improved information about low-frequency stimuli is transmitted
to higher order neurons, pyramidal cells, which receive the summed
input from a population of receptor afferents. Pyramidal cells must
decode this information if it is to be of use to the animal. Thus, it was
important to verify that the reduction in low-frequency power seen in a
single afferent’s baseline activity was preserved when multiple activities
are summed. Under baseline activity, this summed input would contain
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Figure 2 Responses of receptor afferents to random amplitude modulations

of the EOD. Throughout, we used band-limited (0–120 Hz) white noise as the

modulation signal. The average coherence curve, C(f ) (solid line), is plotted

with the average gain curve, G(f ) (dashed line), for comparison. The gain

curve shows a sharp maximum at 76.00 7 6.43 Hz, a frequency that is not

statistically different from that obtained with sinusoidal stimuli (P ¼ 0.49,

pairwise t-test, n ¼ 17). The coherence curve is more broadband and peaks

at a lower frequency (23.64 7 2.22 Hz) than the gain curve (P o 10�3,
pairwise t-test, n ¼ 41). The gain was normalized by its value at 1 Hz.

Gray bands indicate 71 s.e.m.

Figure 1 Responses of receptor afferents to sinusoidal amplitude

modulations of the EOD. (a) Vector strength tuning curve averaged across

41 receptor afferents. Error bars indicate 71 s.e.m. The vector strength

shows a maximum at a frequency of 84.24 7 3.14 Hz. (b) Gain tuning

curve averaged across the same population. Error bars indicate 71 s.e.m.

Gain shows a maximum at a frequency of 85.21 7 3.36 Hz, similar to that

of the vector strength curve (P ¼ 0.42, pairwise t-test, n ¼ 41). The gain was

normalized by its value at 1 Hz.
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low power at low frequencies if its power spectrum were simply given
by the sum of individual receptor afferents’ power spectra (Fig. 3a).
However, correlated activity among receptor afferents could preclude
this outcome (see Methods). Therefore, the data presented thus far
does not prove that the summed input would also contain low power at
low frequencies, as we could not detect correlated activity among
receptor afferents recorded individually. To test for correlated activity,
we performed simultaneous recordings from pairs of receptor afferents
under both baseline and stimulated conditions. As expected, there was
substantial correlation at frequencies associated with the fish’s EOD,
as it is a common input to both afferents (Fig. 4a). However, we did not
observe this correlation at other frequencies, particularly in the
frequency range of prey-like stimuli (Fig. 4a, inset). We verified this
by randomly shuffling each afferent’s ISI sequence, thereby removing
all correlations at frequencies associated with the EOD (Fig. 4a). More
notably, however, shuffling did not alter the cross-spectrum over the
frequency range of the stimuli used (Fig. 4a, inset), verifying that the
original spike trains were uncorrelated over the range of frequencies
associated with prey-like stimuli. Cross-spectra based on normal and
shuffled ISI sequences were integrated over 0–120Hz and compared for

each receptor afferent pair. Their differences were not statistically
significantly different from zero (P ¼ 0.55, pairwise t-test, n ¼ 10).
Thus, no correlated activity in the 0–120 Hz frequency range was
present in the original data. As in the case of single receptor afferents,
the summed input from pairs of receptor afferents showed low power
at low frequencies (Fig. 4b), and shuffling the ISIs greatly increased
low-frequency power (Fig. 4b).
To verify that the reduced low-frequency power of pairs of afferents

translated into increased information about low-frequency stimuli, we
applied the same RAM stimulus to each pair. The average coherence
curves (Fig. 5a) from the summed activity of pairs and from single
afferents (Fig. 2) had similar shapes, and both indicated greatly
improved information transfer at low frequencies as compared with
more conventional tuning measures derived from transfer function
analysis (Fig. 5a). Thus, the same differences between the coherence
and conventional tuning measures are seen for individual receptor
afferents as well as at the afferent population level. Given these different
estimates of receptor afferent population tuning, it was important to
determine which best described themessage conveyed to the CNS, or in
other words, which measure of tuning best predicted the output of the
postsynaptic neurons that decode electroreceptor afferent input.

The brain decodes information from receptor afferents

In order to resolve this issue, we recorded the response of the
postsynaptic targets of receptor afferents, pyramidal cells, to identical
RAM stimuli. Conventional pyramidal cell tuning curves as well as
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Figure 3 Receptor afferent spike train characteristics. (a) Average (n ¼ 41)

power spectrum of receptor afferent baseline (that is, no EOD modulation)

activity (solid line). The spectrum decays to a very low value at zero frequency

and slowly increases and peaks at a frequency related to the spontaneous

firing frequency of the afferent. The average power spectrum of shuffled

spike trains (dashed line; see Methods) shows higher power at frequencies

below 80 Hz. The inset shows the population-averaged ISI serial

correlation coefficients rj as a function of lag j (see Methods). A negative
correlation coefficient is seen at lag 1 for the baseline spike train

(solid line), whereas the shuffled spike train (dashed line) has rj ¼ 0

for j 4 0. (b) Population-averaged coherence curve for receptor afferent

responses to 0–120 Hz RAM stimuli (solid line). The predicted coherence

curve (dashed line) based on the shuffled spike train is also shown

(see Methods) and peaks at 59.34 7 2.72 Hz, significantly higher than

the peak of the unshuffled coherence (P o 10�3, pairwise t-test, n ¼ 41).

Gray bands indicate 71 s.e.m.

Figure 4 Characteristics of the afferent population. (a) An example

cross-spectrum (absolute value) between a pair of receptor afferents that

were recorded from simultaneously. The raw data (black line) shows that

there is no substantial correlation except at frequencies associated with the

fish’s own EOD (E 700 Hz). The cross-spectrum between the two resulting

spike trains is also shown (gray line). The inset shows the two curves over the

0–120 Hz frequency range, and no significant difference is seen over that

range. (b) Power spectrum of the summed activity for that pair (black line)

and for the summed activity of the shuffled spike trains (gray line). Low

power at low frequencies is seen in the raw data, and ISI shuffling increases

this low-frequency power.
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information tuning curves (Fig. 5b) both showed maxima between 20
and 30 Hz. Neither the maxima of pyramidal cell tuning curves
determined by coherence or transfer function analysis were
significantly different from that of receptor afferent information tuning
curves (Fig. 2), which averaged about 24 Hz (P ¼ 0.98 and 0.36,
respectively, t-tests, 51 degrees of freedom). However, both estimates of
pyramidal cell tuning were significantly less than receptor afferent
tuning determined with either vector strength or transfer function
analysis. For example, the peak frequency of the gain tuning curve for
pyramidal cells was significantly different from the peak frequency
obtained from the gain curve of receptor afferents (P o 10�3, t-test,
51 degrees of freedom). Thus, pyramidal cell responses reflected
receptor afferent information tuning more closely than it reflected
receptor afferent tuning determined with more classical techni-
ques. Furthermore, the improved receptor afferent low-frequency
responsiveness shown by information tuning resulted in a wider
receptor afferent bandwidth, facilitating the transmission of informa-
tion relevant to prey detection and capture as well as other behaviorally
relevant stimuli.

DISCUSSION

We have shown that although two different classical measures of tuning
agree well with one another, there are significant differences between
these and information tuning curves for receptor afferents. This
difference is due to strong ISI correlations seen in receptor afferent
spike trains that lead to a shaping of the baseline power spectrum (noise
shaping). As receptor afferents are not correlated over the frequency
range of behaviorally relevant stimuli, the summed input from a
population of receptor afferents will also show similar shaping of its

baseline power spectrum. Noise shaping is commonly observed in
engineering devices25, and theoretical studies have postulated as to its
putative role for it in brain function18,26–28. This is the first experi-
mental demonstration of such effects in vivo: noise shaping improves
the responses of neurons to naturalistic stimuli by reducing noise
within a specific frequency range.
Modeling studies have shown that calcium-activated potassium

currents can lead to negative ISI correlations29,30. These currents are
present in electroreceptors31; thus, they could presumably contribute to
the negative ISI correlations seen here. These correlations are present in
other systems as well at both the peripheral and the cortical level32–34,
and calcium-activated potassium currents are also seen in a variety of
neurons35. Thus, the influence of negative ISI correlations on informa-
tion transfer could be a general feature of sensory processing. Further-
more, numerous other types of dynamics such as bursting13,
oscillations14 and chaos15 exist, raising the possibility of a rich repertoire
of dynamic effects on information transfer. However, not all neural
variables will have an influence on information transmission: a previous
study has found that neural refractoriness increased the precision of
spike timing yet had no significant effects on information tuning36.
When the goal is to understand the relationship between an animal’s

nervous system function and its behavior, it is important to consider
the information that is decoded by the postsynaptic cell. Recordings
from the pyramidal cells showed that both their classical and informa-
tion tuning were most similar to receptor afferent information tuning.
The lack of qualitative differences between classical and information
tuning for the subset of pyramidal cells studied reflects their lack of
significant intrinsic spike train dynamics37. Although the importance
of using information-theoretic measures over more conventional
measures has been advocated before1,38, only a few studies have actually
compared the two, and these found little or no qualitative difference
between them39. This is the first instance in which major qualitative
differences between the transfer and coherence functions have been
observed and attributed to negative ISI correlations.
The neural code must capture information critical to an animal’s

survival. Formal properties of a code include a transformation or
encoding process as well as an interpretation or decoding process.
Encoding capabilities are typically estimated via transfer functions or
reverse correlation techniques12,39 that are, in fact, equivalent for white
noise stimuli40. These techniques are commonly used to estimate the
shape of both visual spatiotemporal41 and auditory spectrotemporal12

receptive fields. The decoding abilities of postsynaptic targets can be
estimated through the information tuning curves presented here1, and
we have shown that spike train dynamics can have profound effects on
the information that can be recovered by a postsynaptic cell. Therefore,
as previously suggested1, decoding measures that include the effects of
neural dynamicsmight bemore appropriatemeasures of neural tuning.
How these will affect estimates of receptive field organization is
presently unknown. Our analysis shows that using decoding measures
based on information theory may lead to improved understanding of
the ways sensory neurons process behaviorally relevant stimuli.
Although transfer function analysis remains an important tool to

characterize the input-output properties of systems in many fields,
many biological and non-biological systems are capable of rich
dynamics42. These dynamics can potentially alter their responses to
input as seen from the point of view of the decoder.

METHODS
Stimulation and recording. We used the weakly electric fish species

A. leptorhynchus in this study. The experimental protocol has been previously

described in detail43. The stimuli consisted of sinusoidal and band-limited
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Figure 5 Tuning properties of higher order neurons. (a) Population-averaged

coherence (solid line) and gain (dashed line) curves for the ten pairs of

afferents from which recordings were made. The gain was normalized by its

value at 1 Hz. The coherence and gain curves peak at different frequencies

that averaged 28.32 7 11.89 Hz and 46.19 7 12.51 Hz for the coherence

and gain curves, respectively (P ¼ 0.003, pairwise t-test, n ¼ 10).
(b) Response of higher-order neurons (ELL pyramidal cells) to random

stimuli. Average (n ¼ 10) gain (solid line) and coherence (dashed line)

curves show maxima at 29.8 7 2.77 Hz and 23.5 7 2.69 Hz, respectively

(P ¼ 0.09, pairwise t-test, n ¼ 10). Gray bands indicate 71 s.e.m.
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(0–120 Hz) random amplitude modulations of an animal’s own EOD

presented with global geometry (note that receptor afferent responses are

insensitive to the spatial extent of the stimulus43). Extracellular single-unit

recordings from pyramidal cells in the centrolateral and lateral segments

were made with metal-filled microelectrodes. Pyramidal cells in these segments

have been shown to respond to medium and high-frequency stimuli, res-

pectively21. Intracellular recordings from receptor afferents were made with

40–100 MO, KCl-filled micropipettes. Only pyramidal cells with a firing

frequency greater than 30 Hz (deep basilar pyramidal cells37) were included

in the data sample, as their responses are directly driven by receptor afferent

input and their baseline spike trains lack ISI correlations43. Responses of these

pyramidal cells simply decode the afferent input with minimal complications

owing to intrinsic pyramidal cell dynamics or circuitry. Other pyramidal cells

are more selective in their responses and do respond exclusively to low-

frequency stimuli when the stimulus’ spatial extent is prey-like44. Furthermore,

these same cells shift their frequency preference to a higher range when the

stimulus’ spatial characteristics are communication-like44. Standard electro-

physiological methods were used; data were acquired with Cambridge Electro-

nic Design (CED) 1401 plus hardware and SpikeII software. All surgical

procedures were in accordance with the University of Oklahoma animal care

and use guidelines.

Data analysis. All data analysis was performed using Matlab (Mathworks).

Baseline activity was characterized using the interspike interval distri-

bution as well as the ISI serial correlation coefficients defined as

rj ¼ o IiIi + j � oIi424 / o IiIi � oIi424. Here, oy4 denotes

averaging over index i, and j is the lag. By definition, r0 ¼ 1. When the ISIs are

independent and identically distributed, we have a renewal process, and rj ¼ 0

for j4 0. However, if rj a 0 for any j4 0, the process is non-renewal. We also

computed the spike train power spectrum P0(f) of baseline activity. In order

to eliminate ISI correlations, we randomly shuffled the ISI sequence. We

then computed the spike train power spectrum P0,shuffled(f) of the resulting

spike train.

Spike trains during sinusoidal amplitude modulation (SAM) stimulation

were accumulated as phase histograms. Vector strength, which ranges between

0 (no phase locking) and 1 (perfect phase locking), was used to measure

responses in terms of synchronization to the SAM stimulus. In addition, system

gain G(f) ¼ |Psx(f)|/Pss(f) was used to quantify the system’s amplification as a

function of stimulus frequency f. Responses to RAM stimulation were also

analyzed by computing the system gain as well as the coherence function

C(f) ¼ |Psx(f)|
2/(Pss(f) Pxx(f)), where Pss(f) and Pxx(f) are the power spectra of

the stimulus and spike train under driven activity, respectively. Psx(f) is the

cross-spectrum between the stimulus and the spike train. The coherence C(f)

ranges between 0 and 1 and represents the fraction of frequency component

f that can be decoded by linear means2,39. Population-averaged values are

given throughout the paper as mean 71 s.e.m.

The degree to which two spike trains were correlated was quantified by

computing the absolute value of the cross-spectrum between the pair. The

cross-spectrum is the inverse Fourier transform of the cross-correlation

function. Given two spike trains W and Y, the power spectrum of the summed

input Z ¼ W + Y is then given by the formula Pzz ¼ Pww + Pyy + 2 Re(Pwy).

Here, Pww and Pyy are the power spectra of W and Y, respectively. Pwy is the

cross-spectrum betweenW and Y, whereas Re(Pwy) denotes the real part of Pwy.

Thus, correlated activity would preclude the power spectrum of the summed

input simply being the sum of the power spectra of each individual input.

Random shuffling of the ISI sequence obtained under driven conditions not

only eliminates any intrinsic ISI correlations but also eliminates correlations

owing to the stimulus. In order to circumvent this problem, we used linear

response theory45 to approximate the shuffled spike train power spectrum

obtained under driven activity by Pxx,shuffled(f) E P0,shuffled + G(f)2 Pss(f). This

equation has been used successfully before with neuron models,18 and it

provides a good approximation of the driven power spectrum Pxx(f) in the

control case (data not shown).
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