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Spike-frequency adaptation is a prominent feature of neural dynamics.
Among other mechanisms, various ionic currents modulating spike gen-
eration cause this type of neural adaptation. Prominent examples are
voltage-gated potassium currents (M-type currents), the interplay of cal-
cium currents and intracellular calcium dynamics with calcium-gated
potassium channels (AHP-type currents), and the slow recovery from in-
activation of the fast sodium current. While recent modeling studies have
focused on the effects of specific adaptation currents, we derive a univer-
sal model for the firing-frequency dynamics of an adapting neuron that is
independent of the specific adaptation process and spike generator. The
model is completely defined by the neuron’s onset f -I curve, the steady-
state f -I curve, and the time constant of adaptation. For a specific neu-
ron, these parameters can be easily determined from electrophysiolog-
ical measurements without any pharmacological manipulations. At the
same time, the simplicity of the model allows one to analyze mathemat-
ically how adaptation influences signal processing on the single-neuron
level. In particular, we elucidate the specific nature of high-pass filter
properties caused by spike-frequency adaptation. The model is limited
to firing frequencies higher than the reciprocal adaptation time constant
and to moderate fluctuations of the adaptation and the input current. As
an extension of the model, we introduce a framework for combining an
arbitrary spike generator with a generalized adaptation current.

1 Introduction

Spike-frequency adaptation is a widespread neurobiological phenomenon,
exhibited by almost any type of neuron that generates action potentials.
It occurs in vertebrates as well as in invertebrates, in peripheral as well
as in central neurons, and it may play an important role in neural infor-
mation processing. Within the large variety of mechanisms responsible for
spike-frequency adaptation, ionic currents that influence spike generation
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are of particular importance. Three main types of such adaptation currents
are known: M-type currents, which are caused by voltage-dependent, high-
threshold potassium channels (Brown & Adams, 1980); AHP-type currents,
mediated by calcium-dependent potassium channels (Madison & Nicoll,
1984); and slow recovery from inactivation of the fast sodium channel (Flei-
dervish, Friedman, & Gutnick, 1996).

Recent computer simulations and analytical studies have focused on
specific adaptation mechanisms (Cartling, 1996; Wang, 1998; Ermentrout,
1998; Ermentrout, Pascal, & Gutkin, 2001). To complement these approaches,
we investigate a large group of potential cellular mechanisms. Our goal is
to derive a single universal model that is independent of the biophysical
processes underlying adaptation.

Such a framework has various advantages from both an experimental
and a theoretical point of view. For example, it is often desirable to quantify
spike-frequency adaptation without performing pharmacological manipu-
lations to characterize specific adaptation currents (Benda, Bethge, Hennig,
Pawelzik, & Herz, 2001). This is particularly true if these currents have not
yet been identified in detail. Furthermore, a low-dimensional phenomeno-
logical model is well suited for systematic network simulations and may
thus help to elucidate the functional role of cellular adaptation on the sys-
tems level.

The phenomenon of spike-frequency adaptation is illustrated in Figure 1.
Let us assume that the investigated neuron is in a fully unadapted state.
The initial response to a step-like stimulus reflects the properties of the
nonadapted cell, which are determined by the fast processes of the spike
generator only. The resulting behavior is covered by the neuron’s onset f -I
curve f0(I), which describes the initial firing frequency f0 as a function of
the stimulus intensity I. Due to adaptation, the firing frequency f decays
to some steady-state value f∞. The neuron may even stop spiking after
a while. Measuring f∞ for different inputs I results in the steady-state f -
I curve f∞(I). Electrophysiological recordings show that the decay of the
firing frequency is often approximately exponential and characterized by
some effective adaptation time constant τeff, which may range from tens of
milliseconds (Madison & Nicoll, 1984; Stocker, Krause, & Pedarzini, 1999)
to several seconds (Edman, Gastrelius, & Grampp, 1987; Sah & Clements,
1999). The model we are going to derive is completely defined by the on-
set f -I curve f0(I), the steady-state f -I curve f∞(I), and the effective time
constant τeff. These quantities can be easily measured experimentally and
thus allow quickly characterizing the adaptation properties of individual
neurons.

The article is organized as follows. In section 2, we extract generic prop-
erties of three prototypical adaptation mechanisms. This allows us to derive
a universal phenomenological model in section 3. In section 4, we investi-
gate how the parameters of the model are related to the neuron’s f -I curves
and how the adaptation time constant can be estimated experimentally.
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Figure 1: The phenomenon of spike-frequency adaptation. (A) The voltage trace
of a modified Traub-Miles model with mAHP current (see the appendix for
details) evoked by a step-like stimulus (I = 18 µA/cm2) as indicated by the
solid bar. (B) The corresponding instantaneous firing frequency, defined as the
reciprocal of the interspike intervals. The response f decays from its onset value
f0 in an approximately exponential manner (dashed line) with an effective time
constant τeff to a steady-state value f∞. (C) Measuring the onset and steady-state
response at different stimulus intensities results in the onset and the steady-
state f -I curves, f0(I) and f∞(I), respectively. (D) τeff depends on input intensity
I and is much smaller than the time constant τCa of the calcium removal, which
determines the dynamics of adaptation in the model used for this simulation.

Based on the model, we analyze the effect of adaptation on the neuron’s
f -I curves and quantify signal transmission properties arising from adap-
tation in section 5. Section 6 extends our results and shows how the adap-
tation model can be combined with models of spike generation. We discuss
the model in section 7. A list of commonly used symbols is given in the
appendix.

To illustrate our results we use a modified Traub-Miles model (Ermen-
trout, 1998) as well as the Crook model (Crook, Ermentrout, & Bower, 1998).
We add either an M-type current or an mAHP current to simulate spike-
frequency adaptation. The dynamical equations and parameter values are
also summarized in the appendix.
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2 General Characteristics of Adaptation Currents

In this section, we examine three basic types of ionic currents causing
spike-frequency adaptation: M-type currents, mAHP-type currents, and
sodium currents with slow recovery from inhibition. Our goal is to show
that these different mechanisms can be described by an effective adaptation
current IA:

IA = ḡAmphq c a (V − EA) (2.1a)

τa(V)
da
dt

= a∞(V)− a. (2.1b)

As in the following, the time dependence of dynamical variables has been
omitted for simplicity. ḡa is the current’s maximum conductance and EA is its
reversal potential. The dynamics (2.1b) of the adaptation gating variable a is
a simple relaxation toward a voltage-dependent steady-state variable a∞(V)
with a time constant τa(V) that could depend on the membrane potential V.
m and h are possible additional voltage gated variables raised to the integer
power p and q, respectively. Both variables, if present, have to be much faster
than the adaptation variable a. The constant c is a proportionality factor for
a. In essence, equations (2.1) are the well-known equations for a voltage
gated current as introduced by Hodgkin and Huxley (1952).

2.1 M-Type Currents. M-type currents are slow voltage-dependent
potassium currents (Brown & Adams, 1980). Their dynamics is captured
by

IM = ḡMa(V − EM) (2.2a)

τa(V)
da
dt

= a∞(V)− a, (2.2b)

where ḡM denotes the maximum conductance and EM the reversal poten-
tial. The steady-state variable a∞(V) is a sigmoidal function of the mem-
brane potential V with values between zero and one. M-type currents are
mainly activated during a spike (see Figures 2 and 3). Between spikes, they
deactivate slowly as determined by their time constant τa(V). Activation of
M-type currents causes spike-frequency adaptation, since as potassium cur-
rents they decrease the sensitivity of the spike generator to input currents.
Equations (2.2) are a simple realization of the general description (2.1), with
a being the only gating variable and c = 1.

2.2 mAHP Currents. An important adaptation mechanism arises from
medium afterhyperpolarization (mAHP) currents, which are calcium-
dependent potassium currents (Madison & Nicoll, 1984). Three processes
are involved in this type of adaptation.
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Figure 2: Properties of M-type currents. (A) The dependence of the activation
function a∞(V) on the membrane potential V as defined in the Crook model and
the modified Traub-Miles model. While in the Crook model the M-type current
is slightly activated even at rest (Vrest = −71.4 mV), in the modified Traub-Miles
model, it is activated only during spikes (Vrest = −66.5 mV). The dotted line is
the inverse rate constant α(V) of the M-type current in the Crook model, given
in seconds. (B) The time constant τa(V) in the Crook model is the product of
a∞(V) and 1/α(V) shown in A and has a peak within the linear range of a∞(V).
In the modified Traub-Miles model, τa(V) is assumed to be constant.

First, there are different voltage-gated calcium channels (N, P, Q, L and T
type) that are rapidly activated by depolarizations (about 1 millisecond; Jaffe
et al., 1994). Recent calcium imaging studies show that the total calcium in-
flux per spike is approximately constant (Schiller, Helmchen, & Sakmann,
1995; Helmchen, Imoto, & Sakmann, 1996). Calcium-induced calcium re-
lease may also contribute to spike-triggered calcium transients (Sandler &
Barbara, 1999). All of these processes are very fast. They can be viewed as
part of the spike generator and do not lead to adaptation. In the context of
adaptation, the only relevant effect of these currents is that they increase the
intracellular calcium concentration.

Second, calcium is removed with a slow time constant τCa. This process is
the result of buffering, diffusion, and calcium pumps and can be described
by

τCa
d[Ca2+]

dt
= βICa − [Ca2+]; (2.3)

that is, the concentration of intracellular calcium [Ca2+] is increased propor-
tionally to the calcium influx ICa (Traub, Wong, Miles, & Michelson, 1991).
The time constant τCa of the calcium removal determines the timescale of
this type of adaptation. Thus, the calcium dynamics 2.3 is equivalent to the
dynamics 2.2b of the gating variable a of an M-type current.

Finally, a potassium current IAHP is activated depending on the intra-
cellular calcium concentration (Brown & Griffith, 1983; Madison & Nicoll,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603322385063&iName=master.img-000.jpg&w=327&h=133
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Figure 3: The dynamics of an adaptation current. Shown is a simulation of
the Crook model stimulated with a constant current I = 4 µA/cm2 starting
at t = 0. Only the sodium, potassium, and calcium currents are included in
the membrane equation so that the firing frequency is constant and does not
adapt. To illustrate the generic behavior of adaptation currents, B–E display the
dynamical variables of an M-type current activated by the voltage trace shown in
A. The steady-state variable a∞(V) and the time constant τa(V)used to model the
M-type current are shown in Figure 2. (A) Voltage trace. The dotted straight line
marks the potential above which a∞(V) is activated. (B) The time course of a∞(V)
resulting from the voltage trace in A. (C) Due to the fast deflections of a∞(V),
the adaptation gating-variable a increases rapidly during spikes. Between the
spikes, a decays with the time constant τa(V) shown in E. The time course of a can
be well approximated by its running average 〈a〉T, which is roughly exponential
(dashed line) with a time constant of 61 ms in this simulation. (D) The adaptation
current IM = ḡMa(V−EM). Note its large fluctuations caused by the spike activity.
(E) The time constant τa(V) also fluctuates strongly during the spikes. The dotted
line denotes the value of the time constant corresponding to the mean gating
variable in C.



A Universal Model for Spike-Frequency Adaptation 2529

1984):

IAHP = ḡAHP q(V − EK) (2.4a)

τq([Ca2+])
dq
dt

= q∞([Ca2+])− q (2.4b)

This mAHP current is responsible for spike-frequency adaptation. Due to
the slow calcium dynamics 2.3, q∞([Ca2+]) is also changing slowly. The
time constant τq, however, is much smaller than the time constant τCa of
the calcium removal. Thus, we can approximate the gating variable q by its
steady-state variable q∞([Ca2+]). As the analysis of various models shows,
q∞([Ca2+]) is well captured by a first-order Michaelis-Menten function and
takes only small values (Crook et al., 1998; Ermentrout, 1998). Therefore, we
can approximate it by q∞([Ca2+]) ≈ c · [Ca2+] where c > 0.

With these approximations, an mAHP-type current can be summarized
as

IAHP ≈ ḡAHP c [Ca2+] (V − EK) (2.5a)

τCa
d[Ca2+]

dt
= βICa(V)− [Ca2+]. (2.5b)

Since the calcium currents are fast, the calcium influx ICa has been approx-
imated by a function directly depending on the membrane potential. The
dynamics of mAHP-type currents are thus formally equal to those of an
M-type current.

2.3 Slow Recovery from Inactivation. Slow recovery from inactivation
of fast sodium channels is caused by an additional inactivation of the sodium
current, which is much slower than the Hodgkin-Huxley-type inactivation
h. It induces a use-dependent removal of excitable sodium channels and
results in spike-frequency adaptation (Fleidervish et al., 1996).

Such currents are gated by an activation variable m and inactivation
variable h, and an additional slow inactivation variable s:

INa = ḡNam3hs(V − ENa) (2.6a)

τm(V)
dm
dt

= m∞(V)− m (2.6b)

τh(V)
dh
dt

= h∞(V)− h (2.6c)

τs(V)
ds
dt

= s∞(V)− s. (2.6d)

The time constant τm of the activation variable m is shorter than 1 millisec-
ond, and τh is of the order of a few milliseconds (Hodgkin & Huxley, 1952;
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Martina & Jonas, 1997). In contrast, the time constant τs of the slow inactiva-
tion process s ranges from a few 100 ms (Martina & Jonas, 1997; Fleidervish
et al., 1996) to more than 1 second (Edman et al., 1987; French, 1989).

Substituting the term (1 − a) for the slow inactivation gating variable s
results in

INa = ḡNam3h(V − ENa)− ḡNam3ha(V − ENa) (2.7a)

τs(V)
da
dt

= 1 − s∞(V)− a. (2.7b)

By this transformation, we have formally split INa into two components.
The first one depends on only the two fast gating variables m and h, and
is responsible for spike initiation only. The second component depends on
the two fast gating variables m and h and on the gating variable a. The
time constant τs(V) of the dynamics (2.7b) of a is voltage dependent and
much slower than the spike generator. The steady-state variable 1 − s∞(V)
is mainly activated at depolarized potentials, that is, during spikes. Thus,
this second component causes adaptation. It conforms with the general
adaptation current (2.1a) with c = −1. The dynamics (2.7b) resembles that
of an M-type current (2.2b).

The adaptation current differs from the spike-initiating component in
equation (2.7a) by the factor a. Under realistic conditions, a never gets close
to its maximum value, which is unity, since very high sustained firing fre-
quencies would be required to do so. Therefore, most of the time, the adap-
tation current is smaller than the spike-initiating component. Because V
always stays below the reversal potential of the sodium current, the driving
force V − ENa is negative so that the second component in equation 2.7a is
positive as the M-type current.

3 Universal Phenomenological Model

The previous section showed that three fundamental adaptation mecha-
nisms can be reduced to a single current (2.1a), which is gated by a single
variable obeying a first-order differential equation, (2.1b). We now go one
step further and derive a phenomenological model for the firing frequency
of an adapting neuron, whose parameters are independent of the specific
adaptation process. To achieve this goal, we replace the adaptation gating
variable a as well as the adaptation current IA by suitable time averages. All
the dependencies on the membrane potential can then be replaced by func-
tions depending on the firing frequency f . The resulting universal model
for spike-frequency adaptation reads

f = f0(I − A · [1 + γ ( f )]) (3.1a)

τ · [1 + ε( f )]
dA
dt

= A∞( f )− A. (3.1b)



A Universal Model for Spike-Frequency Adaptation 2531

The adaptation state A generalizes the averaged adaptation gating variable
a and decays with an adaptation time constant τ toward the steady-state
adaptation strength A∞, which depends on the current firing frequency
f . The averaged adaptation current A · [1 + γ ( f )] depends linearly on A
and may be influenced by f through γ ( f ). The term ε( f ) covers a potential
dependence of τ on f . The input current I minus the averaged adaptation
current is mapped through the neuron’s onset f -I curve f0(I) to result in the
firing frequency f .

In the next section, we first motivate equation (3.1a). We then derive
the simplified adaptation current and its dynamics (3.1b) from the general
adaptation current, equations 2.1.

3.1 Spike Generator and Firing Frequency. Let us first consider a spik-
ing neuron that does not adapt at all (see Figure 3A). The neuron contains
only fast ion channels responsible for spike generation. The membrane po-
tential V at the neuron’s spike initiating zone evolves according to

C
dV
dt

= −
∑

i
gi(V − Ei)+ I. (3.2)

The parameter C is the membrane capacitance. Ionic currents of type i are
characterized by a reversal potential Ei and a conductance gi, whose dy-
namics is described by further differential equations (Hodgkin & Huxley,
1952; Johnston & Wu, 1997). The input current I can be viewed as a dendritic
current, a synaptic current, or a current injected through a microelectrode.

In general, the membrane equation, 3.2, cannot be solved analytically.
However, we do not need to know the exact time course of the membrane
potential, because we are interested only in times at which spikes occur. For
strong enough input, the neuron fires repetitively with firing frequency f
(Hodgkin, 1948). For constant or slowly varying stimulus I(t), this is cap-
tured by the neuron’s f -I curve,

f (t) = f0(I(t)), (3.3)

the simplest transformation of an input current into spikes. In the following,
we use equation 3.3 to indicate that the spike generator transforms the input
signal into a sequence of spikes from which a firing frequency f (t) can be
computed. We discuss this process and the validity of equation 3.3 in more
detail in section 6. The main advantage of using the neuron’s f -I curve to
characterize its encoding properties is that for real neurons, the f -I curve
can be easily obtained from electrophysiological recordings.

Adding an adaptation current (2.1a) can be viewed as adding a second
input current. Formally, the firing frequency of the neuron is then given by

f = f0(I − IA) = f0(I − ḡAmphqca(V − EA)) . (3.4)
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This provides a first hint that the main effect of an adaptation current may
be a shift of the neuron’s f -I curve in the direction of higher input currents
I.

Equation (3.4) is, however, insufficient for a model that involves firing
frequency only, since it still contains m, h, and V. As a next step, we show
how the adaptation current can be replaced by a suitable average that no
longer depends on the spike generator.

3.2 Averaging the Adaptation Current. Since the overall evolution of
the adaptation gating variable a is slow compared to spike generation (see,
for example, Figure 3C), we may try to separate both subsystems and replace
a by its running average 〈a〉T over one period T of the fast subsystem

a(t) ≈ 〈a〉T(t) := 1
T(t)

∫ t+T(t)/2

t−T(t)/2
a(t′)dt′, (3.5)

where T(t) denotes the time-dependent interspike interval (ISI). To allow
this distinction between a fast and a slow dynamics, T(t) has to be short
compared to the time constant of the adaptation processes, which is true for
sufficiently high firing frequencies. This key assumption implies that the
spike generator is operating in its super-threshold regime.

We next aim at replacing the adaptation current IA in equation 2.1a by a
suitable average,

〈IA〉T,w =
∫ T

0
w(t)IA(t)dt, (3.6)

where the normalized weight function w(t),
∫ T

0 w dt = 1, is chosen such that
〈IA〉T,w does not change the effect on the resulting firing frequency. Inserting
the general adaptation current (2.1a) and replacing a by its time average 3.5
we obtain

〈IA〉T,w = 〈ḡAmphq c 〈a〉T (V − EA)〉T,w (3.7)

where we can move ḡAc〈a〉T out of the average. Then equation 3.7 represents
an average over the variables V, m, and h of the spike generator only.

If the effect of the adaptation current on the time course of these variables
is approximately independent of the specific value of 〈a〉T, then there exists
a weight function that is independent of adaptation; the weight is solely
a property of the spike generator. This is the second assumption needed
for the separation of the fast spiking and the slow adaptation dynamics. It
implies that the adaptation current simply reduces the input current and that
fluctuations of the adaptation current have a negligible effect on the time
course of the spike generator. This assumption amounts to a weak coupling
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between the adaptation current and the spike generator. Its validity depends
on the particular dynamics of the spike generator and the strength of the
adaptation current, as stronger adaptation currents will also have stronger
fluctuations. The potential dependence of the γ ( f ) term in equation 3.1a on
A can be used to verify this assumption (see section 4).

In the appendix, we show that for small adaptation strength, the weight
w in equation 3.6 is directly related to the neuron’s normalized response
function. Response functions are typically small during spikes and devi-
ate strongly from zero between spikes (Reyes & Fetz, 1993; Hansel, Mato,
& Meunier, 1995; Ermentrout, 1996). Strong fluctuations of the adaptation
current during a spike and during the refractory period, as in Figure 3D,
have almost no effect on the firing behavior. What really matters for spike
generation is the time course of the adaptation current once the neuron has
recovered from the last action potential.

Since in equation 3.7 we average over the variables V, m, and h of the fast
spike-generating dynamics, the detailed time course of these fast variables
is no longer important. Due to the weak coupling assumption, their time
course is independent of adaptation and thus is uniquely characterized by
the resulting firing frequency, since usually the superthreshold part of f -I
curves is strictly monotonic. We can therefore replace the remaining term
〈mphq(V − EA)〉T,w from averaging equation 2.1a by some function ρ̃( f ):

〈mphq(V − EA)〉T,w ≈ ρ̃( f ). (3.8)

The example shown in Figure 4A illustrates how the time course of the
voltage trace may depend on f . Similar graphs from experimental data
can be found in the literature (see, e.g., Schwindt, 1973). To emphasize the
functional form of ρ̃( f ), we rewrite this term as ρ · [1 + γ ( f )], where ρ is a
constant and γ ( f ) captures the frequency dependence (see Figure 4B).

The adaptation current can thus be approximated by a function depend-
ing only on f :

IA ≈ ḡAc〈a〉Tρ · [1 + γ ( f )]. (3.9)

For adaptation based on potassium currents (M-type and mAHP-type cur-
rents), bothρ, which equals 〈V−EK〉T,w, and c are positive. For slow recovery
from inactivation of sodium currents where c < 0, the membrane potential
stays always below the reversal potential ENa, resulting in a negative ρ.
Thus, cρ is again positive. Defining

A := ḡMc〈a〉Tρ (3.10)

as the adaptation state A and inserting equation 3.9 into equation 3.4, we
finally obtain equation 3.1a. Adaptation shifts the onset f -I curve f0(I), as
expected from equation 3.4. The γ ( f ) term adds a complication in that it
distorts the f -I curve.
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Figure 4: Averaging the membrane potential. (A) Time course of the membrane
potential V(t) during interspike intervals for different firing frequencies f = 40,
80, 120, 160, 200, 240, and 280 Hz. Shown are results from the modified Traub-
Miles model with mAHP-type current. For low firing frequencies, the membrane
potential stays longer near about−70 mV. With increasing firing frequency, more
time is spent at more hyperpolarized potentials. (B) According to equation 3.8,
the averaged driving force 〈V − EK〉T,w is a function of the firing frequency (for
simplicity, we used the response function of the θ neuron z(t) = 1 − cos(2π t/T;
Ermentrout, 1996) for the weight w to generate the data shown in the plot). Its
absolute value ρ is larger than the f -dependent term ργ ( f ).

3.3 Averaging the Adaptation Dynamics. It remains to show how the
dynamics (3.1b) for the adaptation state A can be derived from the dynamics
(2.1b) of the adaptation variable a. To do so, we average equation 2.1b over
one ISI to get an equation for 〈a〉T, which by definition, equation 3.10, is
proportional to A.

The possible V dependence of τa(V) introduces a complication. If we
average equation (2.1b) directly, we have to factorize 〈τa(V)da/dt〉T into
the product of 〈τa(V)〉T and 〈da/dt〉T to isolate 〈a〉T. However, this poses a
problem as τa(V) and da/dt co-vary. According to the Hodgkin-Huxley for-
malism, τa(V) is given by a∞(V) divided by the corresponding rate constant
α(V) of the transition of the channels from their closed to their open state
(Johnston & Wu, 1997). Typically, α(V) increases monotonically, and a∞(V)
is a sigmoidal function whose linear range is located above the cell’s resting
potential and τa(V) takes its maximum above but close to the resting poten-
tial (see also Figure 2). This results in a brief but strong negative deflection of
τa(V) from its mean value during an action potential, as visible in Figure 3E.
At the same time, a(t) increases in a step-like manner when a spike occurs.
This implies that τa(V) and da/dt are strongly anticorrelated. For example,
for the Crook model displayed in Figure 3, the correlation is r = −0.79.
Thus, we cannot average equation 2.1b directly and have to search for an
alternative approach.
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To isolate 〈a〉T, we divide both sides of equation 2.1b by τa(V) and then
average over one ISI:

〈
da
dt

〉
T

=
〈

a∞(V)
τa(V)

〉
T

−
〈

a
τa(V)

〉
T
. (3.11)

In general, the length of the averaging window T(t) depends on time t, so
that 〈

da
dt

〉
T

= d〈a〉T

dt
− dT/dt

T

(
a(t + T/2)+ a(t − T/2)

2
− 〈a〉T

)
. (3.12)

Since we assume that a changes little during one ISI, we can neglect the last
term in parentheses and obtain

〈
da
dt

〉
T

≈ d〈a〉T

dt
. (3.13)

We still have to replace the term 〈a/τa(V)〉T by an appropriate factorization.
This is possible because the fast fluctuations of τa(t) during a spike strongly
reduce a possible correlation between a(t) and 1/τa(t). In the simulation
shown in Figure 3, this correlation is less than 0.15. The term 〈a/τa(V)〉T
may therefore be approximated by 〈a〉T〈1/τa(V)〉T.

Dividing equation 3.11 by 〈1/τa(V)〉T then results in the desired dynamics
for 〈a〉T:

1
〈1/τa(V)〉T

d〈a〉T

dt
= 1

〈1/τa(V)〉T

〈
a∞(V)
τa(V)

〉
T

− 〈a〉T. (3.14)

As shown for equation 3.8, we can approximate averages of functions de-
pending on V by functions depending on the firing frequency f . Doing so,
we obtain the time constant

τ̃ ( f ) ≈ 1
〈1/τa(V)〉T

(3.15)

and steady-state variable

κ( f ) ≈ 1
〈1/τa(V)〉T

〈
a∞(V)
τa(V)

〉
T
. (3.16)

With these abbreviations, equation 3.14 reads

τ̃ ( f )
d〈a〉T

dt
= κ( f )− 〈a〉T. (3.17)
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Figure 5: Averaging the dynamics of M-type current gating variables. Carry-
ing out the same simulation as in Figure 3 (M-type current not included in the
membrane equation) allows us to measure the adaptation time constant τ̃ ( f )
and the steady-state variable κ( f ) as a function of the firing frequency f from
the time course of the gating variable a. Alternatively, these two quantities can be
determined as the averages given in equations 3.15 and 3.16. The graphs show
simulations of the modified Traub-Miles model and the Crook model. (A) The
adaptation time constant as the average τ̃ ( f ) = 1/〈1/τa(V)〉T over a single inter-
spike interval (solid lines), fitted from the time course of the adaptation gating
variable a(t) (dashed lines; see also Figure 3C), and fitted from the time course
of the resulting adaptation current IM (dotted lines; see also Figure 3D). All three
measures agree well, thus confirming the averaging procedures. (B) The steady-
state adaptation variable as the average κ( f ) = 1/〈1/τa〉T〈a∞/τa〉T over a single
interspike interval (solid lines), measured from the time course of the adaptation
gating variable a(t) (dashed lines), and as A∞( f )/ḡAρ determined from the onset
and steady-state f -I curve of the models with the M-type current included using
equation 4.2 (dashed-dotted lines). The factor ḡAρ and the necessary offset were
chosen to fit κ( f ). This resulted for the modified Traub-Miles model in ρ = 29
mV and for the Crook model in ρ = 1.7 mV. Again, all three measures agree
well. For comparison, the best-fitting straight lines g( f ) = mf + b for low firing
frequencies are also plotted (dotted lines).

Both κ( f ) and τ̃ ( f ) can be obtained from either the time course of the
adaptation gating variable a (see Figure 3C), or by the averages 3.15 and
3.16 over a single ISI. Both methods agree well, as illustrated in Figure 5 for
the modified Traub-Miles model and the Crook model with M-type currents.
It is worthwhile to compare τ̃ ( f ) with the time constant governing 〈IA〉T,w.
Figure 5A shows that these two functions agree well, too. Thus, at least for
these two models and slowly varying input currents, the approximations
involved in the averaging procedure are valid.

As suggested by Figure 5A, variations of τ̃ ( f ) might be small compared
to its absolute value. Therefore, we rewrite τ̃ ( f ) as τ [1 + ε( f )] where τ
is a constant and ε( f ) captures the dependence on the firing frequency.
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Multiplying equation 3.17 with ḡAcρ and setting A∞( f ) = ḡAcρκ( f ), we
finally obtain the differential equation 3.1b for A = ḡAcρ〈a〉 (equation 3.10).

4 Parameters of the Adaptation Model

With the exception of the onset f -I curve f0(I), all parameters of the model
rely on microscopic properties of a specific adaptation mechanism through
averages over the adaptation gating variable or the membrane potential. We
next show how the model parameters can be obtained from macroscopic
measurements.

4.1 Steady-State Strength of Adaptation. In steady state, the firing fre-
quency is given by f∞(I), and the adaptation state A equals A∞. Solving the
equation for the adapted firing frequency (3.1a) for A∞ results in

A∞( f∞) = I − f −1
0 ( f∞)

1 + γ ( f∞)
, (4.1)

where f −1
0 is the inverse function of the onset f -I curve f0. In steady state,

the input I obeys I = f −1∞ ( f∞), so that

A∞( f ) = f −1∞ ( f )− f −1
0 ( f )

1 + γ ( f )
. (4.2)

In Figure 5B, A∞( f ) is compared with the averaged steady-state gating
variable κ( f ).

What functional behavior do we expect for A∞( f )? Recall that A∞( f )
is proportional to κ( f ). To understand the dependence of κ( f ) on f , we
decompose the time course of a∞(V(t)) during one ISI into a stereotypical
waveform aS(t) reflecting the spike (with duration TS) and aISI(t) describ-
ing the nonspike-related part of a∞(V). Assuming τa(V) to be constant, the
average equation 3.16, reads

κ( f ) ≈ 〈a∞(V)〉T = 1
T

(∫ TS

0
aS(t)dt +

∫ T

0
aISI(t)dt

)
. (4.3)

The first integral is a constant since the spike waveform is usually inde-
pendent of firing frequency. The second integral is small compared to the
first one since a∞(V) is not significantly activated by the low membrane
potentials between spikes. We therefore expect κ( f ), and thus A∞( f ), to be
proportional to f = 1/T. Deviations from this behavior are caused by an ac-
tivation of adaptation channels between spikes, or by frequency-dependent
spike deformations.
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For the modified Traub-Miles model A∞( f ) is indeed proportional to f
(see Figure 5B), because the M-type current of this model is activated during
spikes only (see Figure 2A). In the Crook model, however, the current is
already activated at lower potentials. This causes a nonlinear κ( f ) and a
positive offset at f = 0. The offset can be removed by adding the spike-
independent part of the M-type current to the membrane equation, 3.2.
Doing so, κ( f ) becomes approximately proportional to f for small firing
frequencies.

4.2 The γ ( f ) - Term. The γ ( f ) term describes the frequency dependence
of the averaged adaptation current, equation 3.9. To determine this term, at
least one adapted f -I curve f (I; A) of the neuron being at a certain constant
adaptation state A is needed. γ ( f ) can then be derived from equation 3.1a,

γ ( f ) = I − f −1
0 ( f (I; A))

A
− 1. (4.4)

In this equation, A is the distance between the onset f -I curve f0(I) and the
adapted f -I curve f (I; A) at some firing frequency. Note that γ ( f ) is small
in a region around this firing frequency. It can therefore be neglected for
small fluctuations of the input I. In Figure 6, an example of γ ( f ) is shown,
together with information about how to measure f (I; A).

Can we neglect the γ ( f )-term if the input has larger fluctuations? Let us
decompose the time course of the membrane potential into a stereotypical
spike waveform VS(t) of duration TS and a second term VISI(t) describing
the nonspike-related part of V. Similarly to equation 4.3, the average 3.8
with p = q = 0 then reads

ρ̃( f ) = 〈V − EA〉T,w

= 1
T

(∫ TS

0
w̃(t)VS(t)dt +

∫ T

0
w̃(t)VISI(t)dt

)
− EA. (4.5)

As a simplifying hypothesis, let us further assume that VISI(t), as well as
the weight function w(t), obey a scale invariance such that VISI(t) = V̂ISI(tf )
and w(t) = ŵ(tf ). Substituting x for tf , we get

ρ̃( f ) ≈ 1
T

∫ TS

0
w(t)VS(t)dt +

∫ 1

0
ŵ(x)V̂ISI(x)dx − EA. (4.6)

The first integral covers spike-related phenomena and can be neglected
because w(t) is small during the spike and usually TS � T. According to
our assumption, the second integral is independent of f , so that ρ̃( f ) is
constant. Thus, for this scenario, the γ ( f ) term vanishes. A nonzero γ ( f )
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Figure 6: Adapted f -I curves. (A) Comparison of some adapted f -I curves
f (I; A) with the onset f -I curve f0(I) ≡ f (I; 0) and the steady-state f -I curve
f∞(I) for the modified Traub-Miles with mAHP current. (B) The adapted f -I
curves shifted on top of the onset f -I curve so that they align at f = 230 Hz. As
expected, all of these f -I curves are similar in shape. The inset shows the cor-
responding γ ( f ) terms which were computed using equation 4.4 and the value
of A set to the distance of the f -I curves at f = 230 Hz. The γ ( f ) terms are very
similar, thus verifying the weak coupling assumption of the universal model.
Above a firing frequency of approximately 50 Hz, the γ ( f ) term is small (less
than 6%). The deviations of the f -I curves and thus the high (negative) values
of the γ ( f )-term below 50 Hz may arise due to the difficulties in measuring the
adapted f -I curves. (C) Firing frequencies evoked by the protocol for measuring
an adapted f -I curve (see the inset). In this example, the neuron is first adapted
to I0 = 12 (conditioning stimulus, −300 ms < t < 0). Then the input is stepped
to different test stimuli I (t > 0) to measure the initial response of the adapted
neuron at these intensities (dots). The responses to higher test intensities show
sharp peaks, which decay back to a new steady state. Lower test intensities result
in decreased responses, which increase due to recovery from adaptation to the
corresponding steady-state values. (D) A closer look at some of the responses
in C reveals that the initial responses for stimulus intensities below the condi-
tioning stimulus are not well defined. Since the neuron responds with repetitive
firing to the conditioning stimulus, there might be a spike at t = 0 or shortly
before. Thus, the lowest firing frequency that can be measured before a spike
at time t is f ≈ 1/t (dotted line). As a consequence, firing frequencies (dots)
measured below the 1/t line overestimate the real response. This results in the
tails of the adapted f -I curves in A.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603322385063&iName=master.img-001.png&w=311&h=226
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term most likely results from a dependence of VISI(t) on f , which does not
scale with f . Figure 4 gives one example.

Note that the γ ( f ) term should be independent of A (see the inset in
Figure 6B). If this is not the case, then the weak coupling assumption of the
model is invalid.

4.3 Time Constants of Adaptation. In addition to the onset f -I curve,
the steady-state f -I curve, and the γ ( f ) term, we still need to know how to
measure the adaptation time constant τ in equation 3.1b in order to apply the
adaptation model to experimental data. To address this issue, we explore
the relation between τ and the effective time constant τeff describing the
decay of the firing frequency during constant stimulation (see Figure 1B).
First, we discuss why these two time constants differ in general. Then we
investigate how the time course of the adaptation state can be measured
and used to estimate τ . Finally, we linearize the model 3.1 to give a direct
relation between τ and τeff.

The different estimates of τ are illustrated in Figure 7. For simplicity, the
ε( f ) term introducing a dependence of the adaptation time constant on the
firing frequency is neglected in the following analysis. We justify this in the
last paragraph of this section.

In general, the adaptation time constant τ is not identical with the effec-
tive time constant τeff (see Figure 1D). The main reason is that the steady-
state strength of adaptation A∞ depends on the actual firing frequency.
Thus, A∞ is not constant, and A(t) is not necessarily an exponential func-
tion with time constant τ . The time constant τA, which we obtain by fitting
a single exponential to the time course of A(t), may therefore differ from
τ . A possible discrepancy between τ and τeff may also be due to the onset
f -I curve and the γ ( f ) term. Both determine how A influences f . If γ ( f )
is nonzero or the onset f -I curve is nonlinear, τeff differs from τA and thus
from τ .

Knowing f0(I) and γ ( f ) enables one to calculate the time course of A
from equation 3.1a:

A = I − f −1
0 ( f )

1 + γ ( f )
. (4.7)

Using this equation, the time evolution of A can be computed without any
knowledge about the adaptation time constant and mechanism, provided
f −1
0 (I) exists. This is guaranteed if f0(I) is strictly monotone in the region

of interest but excludes the subthreshold region where f0(I) vanishes. From
the decay of A for constant I, the corresponding time constant τA can be
obtained by fitting a single exponential on A(t).

The dependence of A∞ on f still causes τA to differ from τ . However,
for subthreshold stimuli, f is zero and so is A∞. Equation 3.1b reduces to
τdA/dt = −A, an exponential recovery of A with time constant τ . Since
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Figure 7: Adaptation time constants. (A) The onset f -I curve and the steady-
state f -I curve used for the simulation of time constants shown in C. The choice
f0(I) = 60

√
I reproduces the shape of a typical f -I curve of a type I neu-

ron (Ermentrout, 1996) and the corresponding steady-state f -I curve f∞(I) =
60
√

I + 0.12602/4−0.1 ·602/2 results from linear adaptation of medium strength
with A∞( f ) = 0.1 · f . (B) The f -I curves of the modified Traub-Miles model with
M-type current as a more realistic example for estimating the adaptation time
constant. (C) Time constants calculated from f (t) simulated with the model 3.1
using the f -I curves shown in A and τ = 100 ms. (D) Time constants resulting
from simulations with the Traub-Miles model where τ = 100 ms (horizontal
dotted line). (C, D) For subthreshold stimuli (I < 0), the time constants were
derived from recovery from adaptation, as explained in the text. For superthresh-
old stimuli, τeff is directly measured from f (t) by means of an exponential fit.
For sub- and especially superthreshold stimuli, τeff is smaller than τ . The time
constant τA of the decay of A(t) was computed from the response f (t) using
equation 4.7. For superthreshold stimuli, τA differs clearly from τ . The correc-
tion of τeff with f ′

0( f −1
0 ( f∞(I)))/f ′

∞(I)overestimates τ , whereas the correction with
f ′
0(I)/f ′

∞( f −1
∞ ( f0(I))) results in values much closer to τ . An alternative way to es-

timate τ is to fit f (t) computed with the model 3.1 to the measured f (t) with τ
as the fit parameter. This gives the best estimate τf of the true τ . For subthresh-
old stimulus intensities, τA reveals a good estimate of τ too. (D) Note that for
low firing frequencies (at about I < 4), the model assumption f � 1/τ is not
fulfilled.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603322385063&iName=master.img-002.jpg&w=328&h=262
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f = 0, we cannot compute the time course of A directly from equation 4.7.
Instead, we have to probe A(t) by applying short test stimuli with given in-
tensity I at different times after the offset of an adaptation stimulus. From the
onset firing frequencies evoked by these stimuli, we can infer A(t) through
equation 4.7. By fitting a single exponential on A(t), we finally obtain τ .
Note, however, that with this method, we violate the assumption of high
firing frequencies. For V-dependent time constants τa(V), like the one of
the M-type current in the Crook model (see Figure 2B), this method mea-
sures the value of the time constant at resting potential, which can be much
smaller than τ for the superthreshold regime.

A simple method to estimate τ for the superthreshold regime is to calcu-
late it directly from τeff. Eliminating A in equation 3.1b using equations 3.1a
and 4.2, and expanding the f -I curves around f∞(I),

f −1
∞ ( f ) ≈ I + d f −1∞

d f

∣∣∣∣
f= f∞(I)

· ( f − f∞(I)) (4.8a)

f −1
0 ( f ) ≈ f −1

0 ( f∞(I))+ d f −1
0

d f

∣∣∣∣∣
f= f∞(I)

· ( f − f∞(I)), (4.8b)

results in a linear differential equation for f :

τeff(I)
d f
dt

= f∞(I)+ τeff(I) f ′
0( f −1

0 ( f∞(I)))
dI
dt

− f. (4.9)

In this equation, τeff is the decay constant of the firing frequency f , which
is given by

τeff(I) = τ
f ′∞(I)

f ′
0( f −1

0 ( f∞(I)))
. (4.10)

Thus, τ is scaled by the slopes of the f -I curves at the steady-state frequency
f∞(I).

This approximation is correct for small deviations of f from f∞(I). How-
ever, τeff is usually measured by applying a constant stimulus to the un-
adapted neuron, as in Figure 1. In this case, the initial response deviates
significantly from the steady state and dominates the estimate of τeff. It
might therefore be better to expand the f -I curves at f0(I) instead of f∞(I).
Doing so, we get

τeff(I) = τ
f ′∞( f −1∞ ( f0(I)))

f ′
0(I)

, (4.11)

which generalizes the results of Ermentrout (1998) to arbitrary f -I curves.
Especially slightly above the firing threshold of the onset f -I curve f0(I), its
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slope is much larger than that of the steady-state f -I curve. This causes τeff
to be smaller than at higher input intensities. However, the time constant
resulting from the M-type current of the Crook model (see Figure 5A) in-
creases for small f , thus counteracting the effect of the f -I curves. Inverting
equation 4.11 allows us to estimate the adaptation time constant τ from the
measured τeff, as illustrated in Figure 7.

An alternative and more precise method to estimate τ is to fit f (t) com-
puted with the model 3.1 to the measured f (t) with τ as the fit parameter.
If the resulting τ depends strongly on the input, one might consider the
possible dependence of the time constant on f ; that is, ε( f ) may not be
negligible.

How strongly might τ̃ ( f ) depend on f ? By definition 3.15, the answer is
determined by how V(t) depends on f . This is similar to the f dependence
arising from averaging the driving force V−EA, equation 3.8, discussed ear-
lier (see equation 4.6 and Figure 4) with the difference that now the average
is not weighted by w. Since spikes are short compared to the remaining ISI,
the main contribution of a possible dependence of τ̃ ( f ) on f results from
changes of the time course of VISI(t), which cannot be explained by a simple
scaling in time by f . Thus, we expect τ̃ ( f ) to depend only weakly on f . The
Crook model (see Figure 5A) confirms this expectation. For firing frequen-
cies higher than 100 Hz, it reaches a constant value. However, for lower
firing frequencies, it depends on f . On the other hand, the time constant of
the modified Traub-Miles model is constant by definition.

5 Signal-Transmission Properties

Using the phenomenological model, equation 3.1, we can now quantify the
influence of adaptation on the signal transmission properties of a neuron
based solely on the knowledge of its f -I curves and adaptation time con-
stant. Formulating filter properties of a neuron in terms of f -I curves has
the important advantage that they can easily be measured with standard
current injection techniques. This allows quantifying functional properties
of individual neurons with low experimental effort.

There are two different types of f -I curves that have to be distinguished
when discussing the signal-transmission properties of a neuron that ex-
hibits adaptation: the adapted f -I curves f (I; A) including the onset f -I
curve f0(I) = f (I; 0) as a special case, on the one hand, and the steady-
state f -I curve f∞(I), on the other hand. In Figure 6A, these different f -I
curves are illustrated for the modified Traub-Miles model. The adapted f -I
curves describe the instantaneous response of a neuron in a given and fixed
adaptation state A. They are important for the transmission of stimulus
components, which are faster than the adaptation dynamics, since only for
such stimuli, the adaptation state can be considered to be fixed (for more
details, see section 5.3). Second, there is the steady-state f -I curve f∞(I).
It describes the response of the neuron when it is fully adapted to the ap-
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plied fixed stimulus intensity and is therefore the relevant f -I curve for the
transmission of stimulus components slower than the adaptation dynamics.

5.1 Adapted f -I Curves. What do the f -I curves f (I; A) look like? Ne-
glecting the γ ( f ) term, equation (3.1a) simplifies to f = f0(I − A). For fixed
A, the adapted f -I curves are thus obtained by shifting the onset f -I curve by
A. Adapted f -I curves of the modified Traub-Miles model (see Figure 6A)
indeed align on top of the onset f -I curve (see Figure 6B).

We measure adapted f -I curves by first applying a constant stimulus I0
to prepare the neuron in a specific adaptation state A. We then use different
test intensities I and construct the adapted f -I curve from the evoked onset
firing frequencies (see Figures 6C and 6D).

5.2 Linear Steady-State f -I Curves and Linear Adaptation. Alterna-
tively, we can ask which functional form the steady-state f -I curve f∞(I)
has, given a specific dependence of A∞ on f . As shown by Ermentrout
(1998), adaptation linearizes the f∞(I)-curve. We now generalize his analy-
sis.

In steady state, f equals f∞(I) and A = A∞. From equation 3.1a, we
obtain the implicit equation

f∞(I) = f0(I − A∞( f∞(I)) · [1 + γ ( f∞(I))]). (5.1)

This equation can be generalized if A acts through a function η(A). For
example, an AHP-type current may depend nonlinearly on the calcium
concentration, which represents the adaptation state. The implicit equation
for f∞(I) then reads

f∞(I) = f0(I − η(A∞( f∞(I))) · [1 + γ ( f∞(I))])

=: f0(I − ĨA( f∞(I))). (5.2)

ĨA( f ) := η(A∞( f )) · [1 + γ ( f )] generalizes the averaged steady-state adap-
tation current. Differentiating both sides of equation 5.2 yields

d f∞(I)
dI

= f ′
0(I − ĨA( f∞(I))) ·

(
1 − Ĩ′A( f∞(I))

d f∞(I)
dI

)
, (5.3)

where the prime denotes a derivative with respect to the argument. We
obtain

Ĩ′A( f∞(I)) = 1
f ′∞(I)

− 1

f ′
0(I − ĨA( f∞(I)))

. (5.4)

There are two possibilities to obtain a linear steady-state f -I curve.
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First, the derivative of the onset f -I curve is either constant or infinity.
The latter is true for type I neurons, whose onset f -I curve is a square root
function near their threshold (Ermentrout, 1996). The derivative of ĨA then
also has to be constant. This implies that ĨA is allowed to vary only linearly
with f . This is the case if γ ( f ) vanishes and if η(A∞( f )) depends linearly on
f . Since most likely A∞ is already proportional to the firing frequency (see
Figure 5B), η(A) has to equal A. We thus obtain

ĨA( f∞) = m · f∞, (5.5)

where m is a proportionality constant. We refer to this set of conditions as
linear adaptation, since if they are satisfied, ĨA as well as A∞ depend linearly
on f . Thus, linear adaptation guarantees a linear steady-state f -I curve for
a linear or very steep onset f -I curve. See Figures 8 and 9B for illustrations.

The second possibility is that the derivative of the onset f -I curve is
neither constant nor infinity. A linear steady-state f -I curve then can still
arise if the ĨA fulfills equation 5.4 with f ′∞(I) = const and f ′

0(I) calculated
from the observed onset f -I curve. We conclude that adaptation may (but
need not) linearize the steady-state f -I curve.

In the same manner, we can examine the influence of the γ ( f ) term on
the adapted f -I-curves. Since A is fixed, the only term introducing an f

Figure 8: Linearization of the steady-state f -I curve. The effect of adaptation on
an onset f -I curve given by f0(I) = 60

√
I is shown for γ ( f ) = 0 and η(A) = A.

(A) Linear adaptation A∞( f ) = m · f linearizes and compresses the steady-state
f -I curve. The steady-state f -I curve is approximately linear as long as the firing
frequency is so small that the onset f -I curve is close to a vertical line. Adaptation
maps each point of the onset f -I curve to the steady-state f -I curve by shifting
it by the adaptation strength A∞( f ) to higher input values as sketched by the
arrow. (B) With quadratic adaptation A∞( f ) = c · f 2, the steady-state f -I curves
are downscaled versions of the onset f -I curve. This type of adaptation therefore
does not linearize f∞(I).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603322385063&iName=master.img-003.png&w=310&h=124
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Figure 9: Influence of the γ ( f ) term on f -I curves. (A) With linear γ ( f ) = 0.02 f
and increasing adaptation A = 2, 4, 6, 8, 10, 12, the adapted f -I curves f (I; A)
are linearized and compressed. (B) The linearizing effect of linear adaptation
A∞( f ) = 0.1 f on the steady-state f -I curve f∞(I) is destroyed by a linear γ ( f )
term (γ ( f ) = γ̃ f , γ̃ = 0, 0.02, 0.2).

dependence is γ ( f ):

f (I; A) = f0(I − A · [1 + γ ( f )]). (5.6)

Taking derivatives of both sides of this equation and rearranging terms
results in

γ ′( f )A = 1
f ′(I; A)

− 1
f ′
0(I − A · [1 + γ ( f )])

. (5.7)

Analogous to the situation for f∞(I) (see equation 5.4), there are two cases
for getting a linear adapted f -I curve. First, if the onset f -I curve is either
a straight line or has an infinite slope at threshold, then γ ( f ) must depend
linearly on f (see Figure 9). Note that in this scenario, linear steady-state f -I
curves are not possible. Second, if the onset f -I curve is neither a straight
line nor has an infinite slope, then the γ ( f ) term must depend appropriately
on f according to equation 5.7 with f ′(I; A) only depending on A. In this
case, linear steady-state f -I curves are unlikely since at the same time, γ ( f )
and ĨA have to satisfy equations 5.7 and 5.4, respectively.

From a different point of view, we may summarize these findings as fol-
lows, given a type I or linear onset f -I curve. Observing a linearized steady-
state f -I curve implies that γ ( f ) can be neglected and that the averaged
adaptation current ĨA( f ) depends linearly on f . A nonlinear steady-state f -
I curve implies a nontrivial γ ( f ) term or a nonlinear ĨA( f ). If the adapted f -I
curves are shifted versions of the onset f -I curve, the γ ( f ) term can be ruled
out, and the nonlinear steady-state f -I curve is caused by a nonlinear ĨA( f ).
Note, however, that if the slope of the onset f -I curve is neither constant nor
infinity, such general statements cannot be made.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/089976603322385063&iName=master.img-004.png&w=310&h=121
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5.3 High-Pass Filter Properties Due to Adaptation. Spike-frequency
adaptation is responsible for high-pass filter properties, since adaptation
currents resemble an inhibitory feedback. By means of the model 3.1, we
can easily quantify these filter properties for a specific neuron from the
knowledge of its onset and steady-state f -I curve, and its adaptation time
constant.

In essence, model 3.1 involves linear dynamics. The only nonlinearities
are introduced by the f -I curves and the γ ( f ) term. Consider a stimulus I(t)
with sufficiently small fluctuations so that the f -I curves can be linearized
around the steady-state firing frequency and the γ ( f ) term can be neglected.
We then obtain equation 4.9, which is linear in f , and we can calculate its
transfer function Hf (ω) by means of Fourier transformation.

|Hf (ω)| = f ′
∞

√
1 + (ωτeff f ′

0/f ′∞)2

1 + ω2τ 2
eff

(5.8)

is the gain for each frequency component ω/2π of the stimulus. Gain and
phase shift of Hf are plotted in Figures 10A and 10B.

Mean and low-frequency components of the stimulus up to ωτeff ≈ 0.2
are transmitted via the slope of the steady-state f -I curve (|Hf (0)| = f ′∞). Fast
fluctuations with ωτeff > 2 are transmitted much better by the slope of the
onset f -I curve (limωτeff→∞ |Hf (ω)| = f ′

0). In between, at around ωcτeff = 1,
the firing frequency response shows the strongest phase advance.

This high-pass frequency property of adaptation can be best under-
stood by the dynamics 3.1b of the adaptation variable A. Substituting f
in equation 4.2 for A∞ by equation 3.1a, setting γ ( f ) = 0, and linearizing at
f = f∞(I) results in

τeff
dA
dt

= I(1 − f ′
∞/f ′

0)− A. (5.9)

The transfer function HA(ω) of this low-pass filter is shown in Figures 10C
and 10D. The adaptation A follows directly the low-frequency components
(ωτeff < 0.2) of the stimulus, thus shifting the onset f -I curve appropriately
toward the corresponding values of the steady-state f -I curve. As a con-
sequence, these slow components are transmitted by the steady-state f -I
curve. High-frequency components (ωτeff > 2) have almost no effect on A.
Thus, fast components are transmitted by an adapted f -I curve, which is the
onset f -I curve shifted to higher input intensities because of low-frequency
components. The shift of the onset f -I curve compensates for the mean
value of the stimulus and optimizes the transmission of fast fluctuations,
generating a special high-pass filter.

Note that the transfer functions of both f and A depend on the effective
time constant τeff and not on the adaptation time constant τ . τeff usually
is a function of the input I, as shown in the context of Figure 7. This may
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Figure 10: Transfer functions. (A) Gain and (B) phase shift of the transfer func-
tion for the firing frequency f (t). The gain (see equation 5.8) is plotted as mul-
tiples of the slope f ′

∞ of the steady-state f -I curve. At negative phase shifts, the
output firing frequency advances the input. (C) Gain and (D) phase shift of the
transfer function for the adaptation state A(t) (see equation 5.9). The gain and
the frequency axis are plotted logarithmically. For τeff ≈ 160 ms, the values of
the frequency axis correspond to frequency components measured in Hertz. The
dotted vertical line marks the cut-off frequency at ωτeff = 1. The labels indicate
the ratios f ′

0/f ′
∞ of the slopes of the f -I curves.

result in cut-off frequencies much higher than expected from the value of the
adaptation time constant. The dynamical behavior of an adapting neuron
is therefore determined by the combined effects of the relative slopes of the
onset and steady-state f -I curves and the adaptation time constant τ .

6 Combining Adaptation and Spike Generation

The model, equation 3.1, simply maps the stimulus I(t) through the onset f -I
curve f0(I) into a firing frequency f (t) for a description of the spike generator.
This approach is valid as long as the input current I(t) is approximately
constant during an interspike interval.

As a consequence of this simple mapping, f (t) fluctuates as fast as I(t)
does. However, the transformation of a stimulus into a sequence of spikes
acts like a low-pass filter. Given the spikes only, fluctuations of the stimulus
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I(t) between two succeeding spikes cannot be observed. Thus, the firing
frequency ν(t) measured from the spikes as the reciprocal of the interspike
intervals is in general different and varies more slowly than the model’s
f (t). Only for stimuli that are approximately constant between two spikes,
f (t) approaches ν(t).

For more rapidly varying stimuli, f (t) has to be fed into a model gen-
erating spikes from which a firing frequency ν(t) can be calculated and
compared with the firing frequency measured experimentally.

The simplest way to do this is to use a nonleaky phase oscillator. This
is the canonical model of dynamical systems having a stable limit cycle,
just like a spike generator in its superthreshold regime for constant stimuli
(Hoppensteadt & Izhikevich, 1997). Here we apply it to time-dependent
stimuli:

dϕ
dt

= f (t); ϕ < 1

ϕ = 0; ϕ = 1 → spike
(6.1)

The activity f (t) = f0(I − A[1 + γ ( f )]) from the adaptation model, equa-
tion 3.1, is the velocity of the phase angle ϕ. Every time ϕ reaches unity, a
cycle is completed and a spike elicited.

We can also use the phase oscillator 6.1 to compute a continuous firing
frequency ν(t). At each time t, we integrate the activity f symmetrically both
backward and forward in time until the integral reaches the value one:

∫ t+ 1
2 T(t)

t− 1
2 T(t)

f (t′)dt′ = 1. (6.2)

The reciprocal of the required integration time T is the desired firing fre-
quency ν(t). Dividing this equation by T results in an implicit equation for
ν(t) as a running average with variable time window T(t) = 1/ν(t):

ν(t) = 1
T(t)

∫ t+ 1
2 T(t)

t− 1
2 T(t)

f (t′) dt′. (6.3)

Computing ν(t) using equation 6.2 captures a large fraction of the low-pass
properties of a spiking neuron, but of course this is only a simple sketch of
a real spike generator.

To extend our general approach to lower firing frequencies and stronger
adaptation currents, it is necessary to incorporate the interaction between
adaptation and spike generation. Let

d�x
dt

= �g(�x, I(t)) (6.4)



2550 J. Benda and A. Herz

be the dynamics of a specific spike generator, that is, an N-dimensional
system of differential equations, which is driven by the input current I(t).
Whenever one of the variables �x(t) (e.g., the membrane potential or a phase
angle) crosses a threshold, there is a spike, and this variable may be re-
set. This is a general formulation of conductance-based models (see equa-
tion 3.2), integrate-and-fire models, and phase oscillators (such as equa-
tion 6.1). For the θ model (Ermentrout, 1996), for example, �x = θ and
�g(�x, I(t)) = q(1 − cos θ) + (1 + cos θ)c(I(t) − I∗), where q and c are con-
stants and I∗ is the input intensity at which the bifurcation from quiescence
to repetitive firing occurs. Whenever the phase angle θ crosses π there is
a spike and θ is reset to −π . In order to use the adaptation model, equa-
tion 3.1, in conjunction with equation 6.4, we need to go back to the general
adaptation current, equation 2.1, by undoing the averages but keeping the
parameterization.

An intermediate approach for moderate adaptation currents is

d�x
dt

= �g (�x, I(t)− A(t) · [1 + γ (ν)]
)

(6.5a)

τ · [1 + ε(ν)]
dA
dt

= A∞(ν)
ν

δ(t − ti)− A, (6.5b)

where δ(t − ti) is Dirac’s delta function, ti is the time of the last spike, and
ν = 1/(ti − ti−1) is the instantaneous firing frequency. For the θ model
example, this equation reads

dθ
dt

= q(1 − cos θ)+ (1 + cos θ)c(I − A − I∗) (6.6a)

τ
dA
dt

= sδ(t − ti)− A, (6.6b)

where we set γ (ν) = 0, ε(ν) = 0, and A∞(ν)/ν = s = const to emphasize
the linear character of such an adaptation current. All parameters γ , τ , ε,
and A∞ of the adaptation current in equations 6.5 and 6.6 are equal to those
of the universal model, 3.1, and thus can be easily measured. However, a
model like 6.5 is still limited to adaptation that is weakly coupled to the
spike generator.

To overcome this limitation, we have to give up the independence of
the adaptation model from microscopic properties of specific adaptation
mechanisms. Consider

d�x
dt

= �g(�x, I(t)− y · ρ̃(�x)) (6.7a)

τ · [1 + ε(ν)]
dy
dt

= y∞(ν)
ν

δ(t − ti)− y. (6.7b)

The adaptation variable y = ḡAca is proportional to the adaptation gating
variable a. ρ̃(�x) = mphq(V − EA) covers the coupling of the adaptation cur-
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rent on the variables �x = (V,m, h, . . .) of the spike generator. This term is no
longer independent of the adaptation mechanism. If adaptation is caused by
slow recovery from inactivation, then p > 0 or q > 0. For all other adaptation
mechanisms, p = q = 0. The adaptation reversal potential EA is an addi-
tional free parameter. Future studies will show which phenomenological
quantities measure this parameter.

The parameterization with macroscopically measurable quantities makes
equations 6.5 and probably 6.7 superior to using a standard adaptation cur-
rent like the M-type current, since all parameters can be estimated from
measurements of the firing frequency without the knowledge of the spe-
cific adaptation mechanism.

7 Discussion

Based on a thorough mathematical analysis of several basic spike adap-
tation mechanisms, a universal phenomenological adaptation model, 3.1,
has been introduced in this article. Our approach combines three important
aspects: biophysics of ionic currents, electrophysiology, and the theory of
signal processing. First, the model is derived from well-known biophysical
kinetics. Second, the model is completely defined by macroscopic quanti-
ties such as the neuron’s f -I curves and the adaptation time constant. These
can be measured easily with standard recording techniques. In particular,
neither pharmacological nor voltage clamp methods are needed, as demon-
strated by a recent study on the dynamics of insect auditory receptor cells
(Benda et al., 2001). Third, the simplicity of the model framework allows
quantitative predictions about the signal transmission properties of specific
neurons arising from spike-frequency adaptation.

7.1 Comparison with Other Adaptation Models. Most modeling stud-
ies concerned with spike-frequency adaptation rely on a specific adaptation
mechanism. Among these mechanisms, the mAHP current has been in-
vestigated intensively. Wang (1998) analyzed a conductance-based model
with calcium dynamics and an mAHP current. He recognized the impor-
tant difference between the time constant of the calcium removal and the
effective time constant as measured from the exponential decay of the firing
frequency. However, since a linear model was used, the relation between
these two time constants depended on the f -I curves at a given intensity
(“percentage adaptation of firing frequency”). This neglects the fact that
the investigated type of adaptation depends on the firing frequency and
not on input intensity. In a more general investigation, Ermentrout (1998)
observed the linearization of steady-state f -I curves in type I neurons. He
compared this result with simulations of a conductance-based model with
both M-type and mAHP currents. For f -I curves of the form f0(I) = c

√
I, he

derived a relation between τ and τeff in agreement with the more general
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equation, 4.11. Adaptation in integrate-and-fire models often has been in-
troduced by an adaptive threshold (MacGregor & Oliver, 1974; Liu & Wang,
2001). However, such thresholds may result in divisive adaptation instead
of the subtractive characteristic of equation 3.1a. Quantitative differences
between an adaptive threshold and an adaptation current were studied by
Liu and Wang (2001) in leaky integrate-and-fire neurons.

The adaptation model introduced by Izhikevich (2000) is a specific im-
plementation of equation 6.5 for the θ neuron, which is up to a different
scaling of variables identical to the example 6.6. It assumes a constant adap-
tation time constant, a steady-state adaptation strength that is proportional
to the firing frequency, and a constant driving force, which is independent
of the model’s phase variable. This model represents the essential proper-
ties of moderate adaptation within the canonical model for type I neurons
(Ermentrout, 1996). Thus, it is well suited to investigate adaptation effects
for interspike intervals that are similar to or even longer than the adaptation
time constant.

In the model presented here (see equation 3.1), the γ ( f ) and the ε( f )
terms introduce a novel frequency dependence of the averaged adaptation
current and time constant, respectively.

7.2 Model Assumptions. The basic assumption behind model 3.1 is that
the firing frequency is high compared to the inverse adaptation time con-
stant. This is important for separating adaptation from spike generation
(Cartling, 1996; Wang, 1998). Since typical adaptation time constants are
larger than 50 ms, the corresponding critical firing frequency is at most
20 Hz. For peripheral neurons and regular spiking cells in the cortex (Con-
nors & Gutnick, 1990) this is not a critical restriction. However, many central
neurons fire only rarely, so that the interplay of the adaptation current with
the spike generator becomes crucial. Both processes have to be analyzed in
combination, for example, based on the framework of equations 6.5 and 6.7,
and specific properties of the spike generator have to be taken into account.

The second main assumption is that fluctuations of the adaptation current
do not strongly influence the time course of the spike dynamics. This allows
one to replace the adaptation current and the adaptation time-constant and
steady-state variable by averages 3.9, 3.15, and 3.16, respectively, depending
only on firing frequency. The validity of this weak coupling assumption
depends on the properties of the specific spike generator and is confirmed
if the γ ( f ) term does not vary strongly with the adaptation state.

This assumption does not interfere with the switch from type I to type II
dynamics induced by activation of M-type currents at low potentials, as
pointed out by Ermentrout et al. (2001). Our description of the unadapted
neuron in terms of its onset f -I curve already includes this effect. In fact,
since the gating variable of the M-type current obeys a linear differential
equation and enters the current linearly, we can replace it by a sum of two
variables. One variable covers the M-type current activated by the low po-
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tentials at rest and between spikes, while the other variable is activated
during spikes only. The first current is part of the spike generator and con-
tributes to the onset f -I curve and the offset of ρ̃( f ) of the Crook-model, as
shown in Figure 5B, and may alter a type I neuron into a type II. Only the
second variable induces spike-frequency adaptation.

Following Kirchoff’s law, ionic currents are additive in the membrane
equation, 3.2. Therefore, adaptation caused by ionic currents is subtractive;
i.e., the adapted f -I curves are shifted versions of the onset f -I curve. Adap-
tation may involve separate currents, like M-type or AHP-type currents,
which obviously are additive in the membrane equation. Mechanisms act-
ing via additional gating variables, like the slow inactivation of the sodium
current, result also in an additive current, provided the other gating vari-
ables involved operate on a faster timescale. The situation is different if an
adaptation process modulates the dynamics of an ionic current. For exam-
ple, the level of intracellular calcium influences gene expression and could
thus slowly modulate ionic currents and eventually change the shape of the
f -I curve (Shin, Koch, & Douglas, 1999; Stemmler & Koch, 1999).

We have shown that averaging the driving force of the adaptation cur-
rent results in a constant term ρ plus higher-order terms γ ( f ) in the firing
frequency f . This finding is independent of using Ohm’s law, the Goldman-
Hodgkin-Katz equation, or other models for membrane currents (Johnston
& Wu, 1997), since we have exploited only the fact that the driving force
depends on the membrane potential.

We have also assumed that the adaptation current is linearly scaled by the
adaptation variable. Unlike the Hodgkin-Huxley channels, all models of the
kinetics of voltage-gated adaptation currents are indeed linear (Edman et al.,
1987; Fleidervish et al., 1996; Crook et al., 1998; Delord, Baraduc, Costalat,
Burnod, & Guignon, 2000). However, the steady-state mAHP current may
depend nonlinearly on the intracellular calcium concentration, as discussed
below.

In principle, adaptation could be influenced by all biophysical processes
present in the investigated cell. In many cases, however, one process is dom-
inant. A single differential equation may then be used to capture the adapta-
tion phenomena. Faster processes can be included into the spike generator,
slower processes can be neglected, and processes with similar timescales
can often be combined with this single differential equation. However, it
is quite common that the timescales of the adaptation mechanisms depend
on the membrane potential or calcium concentration. A single differen-
tial equation might then no longer be sufficient to describe adaptation. To
our knowledge, no single current with two similar time constants exists
(Hille, 1992). However, regarding adaptation due to AHP-type currents,
several differential equations might indeed be involved. Another likely pos-
sibility is that several adaptation currents with similar time constants are
jointly responsible for the macroscopically observed spike-frequency adap-
tation (Madison & Nicoll, 1984; Köhler et al., 1996; Xia et al., 1998; Stocker
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et al., 1999). Their time constants could depend in different ways on the
firing frequency and exclude a description in terms of a single differential
equation.

7.3 Specific Biophysical Mechanisms. Channels carrying M-type cur-
rents are composed out of KCNQ2, KCNQ3 and KCNQ5 subunits (Wang
et al., 1998; Schroeder, Hechberger, Hechenberger, Weinreich, Kubisch, &
Jentsch, 2000). It is likely that different combinations of these subunits co-
exist in a single neuron and that they differ in quantitative aspects of their
kinetics, especially in their time constants. This could make more than one
differential equation necessary for modeling the resulting spike-frequency
adaptation.

The mAHP-type current is a prominent current used for modeling stud-
ies (Cartling, 1996; Ermentrout, 1998; Wang, 1998; Liu & Wang, 2001) and
serves as an example for linear adaptation, governed by a single differential
equation with fixed time constant. However, in contrast to M-type currents
and slow recovery from inactivation, various assumptions have to be made
to fit mAHP-type currents into this picture.

First, there is a possible nonlinear dependence of the mAHP current on
calcium concentration. As a consequence, the adaptation current (mAHP
current) would not be proportional to the adaptation state (calcium con-
centration). While Ermentrout (1998) and Wang (1998) do not consider this
possibility, Engel, Schultens, and Schild (1999) argue for an important role
of such nonlinearity. As shown by Figure 8, the shape of the steady-state
f -I curves of type I neurons can be linearized only if adaptation is linear;
a nonlinear steady-state f -I curve must result from a nonlinear adaptation
and/or the γ ( f ) term. Numerous experimental data from type I neurons are
in agreement with linearized steady-state f -I curves (Koike, Mano, Okada,
& Oshima, 1970; Gustafsson & Wigström, 1981) and suggest a linear depen-
dence of the adaptation current on its gating variable. However, a distinct
linearizing effect requires the steady-state adaptation current to be strong
enough. For experimental f -I curves, it is sometimes difficult to distinguish
whether the steady-state f -I curve is nonlinear due to weak adaptation or
due to a true nonlinear adaptation (see, e.g., Madison & Nicoll, 1984; Lan-
thorn, Storm, & Andersen, 1984). Thus, in general, a nonlinear dependence
of the adaptation current on the adaptation state cannot be ruled out.

Second, the mAHP gating variable is assumed to be fast enough so that it
can be replaced by its steady-state variable. Based on mAHP channel gating
data, the study of Hirschberg, Maylie, Adelman, and Marrion (1998) hints
at long time constants (> 40 ms) of this current at low calcium concentra-
tions. Its dynamics cannot be neglected if this time constant exceeds the
time constant of the calcium dynamics and could dominate the adaptation
dynamics at low calcium levels. At higher calcium levels, calcium removal
would be the prominent component. This could result in a dependence of
the macroscopically observed effective adaptation time constant on the fir-
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ing frequency and may even require a second differential equation for the
gating variable of the mAHP current.

Third, the time constant of calcium removal could depend on firing fre-
quency. Calcium imaging shows a decreasing time constant of the mean
intracellular calcium level with increasing firing frequency (Schiller et al.,
1995; Helmchen et al., 1996). This effect seems to be reproduced by detailed
models of the calcium dynamics that include diffusion, pumps, and buffer-
ing (Engel et al., 1999; Schutter & Smolen, 1998), and might be important for
studies on how adaptation influences the spike pattern at firing frequencies
similar to the adaptation time constant.

Fourth, channels mediating the calcium influx during spikes can inacti-
vate on a timescale of several 10 to 100 ms (Jaffe et al., 1994; Yamada, Koch,
& Adams, 1998). This inactivation reduces the calcium influx per spike and
thus also the strength of spike-frequency adaptation. Therefore, a further
differential equation could be necessary to incorporate this process, which
would act on the steady-state adaptation strength A∞( f ).

Besides the mAHP current, there exists a slow sAHP current, which in-
duces afterhyperpolarizations and adaptation on timescales of more than
1 second (Sah & Clements, 1999; Stocker et al., 1999). There is an ongo-
ing debate about the biophysical processes responsible (Sah & Clements,
1999). If the slow kinetics of the channels mediating the sAHP current is the
dominating process, an additional differential equation for the gating of the
sAHP current would be needed.

Slow recovery from inactivation has been observed for many different
ionic currents. In sodium currents, it causes spike-frequency adaptation,
whereas in potassium currents, it results in spike-frequency facilitation (Ed-
man et al., 1987; Delord et al., 2000). In contrast to the M-type currents and
mAHP currents, slow inactivation operates on longer timescales of about
1 second and more (French, 1989; Edman et al., 1987; Fleidervish et al., 1996;
Martina & Jonas, 1997; Delord et al., 2000). From a mechanistic point of
view, the only difference between spike-frequency adaptation and facilita-
tion is that the adaptation state increases the effective input current instead
of decreasing it.

Currents such as IQ or Ih are activated by hyperpolarization (Halliwell
& Adams, 1982; Maccaferri, Mangoni, Lazzari, & Di Francesco, 1993). With
depolarizing inputs, these currents deactivate and contribute to spike-fre-
quency adaptation. Their dynamics could be treated in a similar fashion as
the dynamics of slow recovery from inactivation.

Sanchez-Vives, Nowak, & McCormick (2000) report a Na+-activated K+-
current. This current induces spike-frequency adaptation on a long timescale
(about 3 to 10 seconds). Since no details about the kinetics of this current are
known, it remains unclear if it can be described by the adaptation model
3.1. The situation might be similar to that of the sAHP current.

Finally, electrogenic pumps have to be considered as another cause of
slow adaptation (Sanchez-Vives et al., 2000). Their currents act subtractively
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on the input and, in their simplest form, obey a single linear differential
equation. It is therefore likely that such currents are also in agreement with
the adaptation model.

In summary, many adaptation currents involved in spike generation fit
into our phenomenological approach. Specific cases of adaptation due to
mAHP currents and sAHP currents might be an exception. Several pro-
cesses with potentially different timescales are involved in these two types
of adaptation, possibly requiring more than one differential equation for a
precise description of the resulting spike-frequency adaptation.

7.4 Functional Role of Adaptation. The shape of a neuron’s f -I curve
is important for its signal transmission properties. Stimuli below the firing
threshold Ith are not transmitted at all, and the slope of the f -I curve limits
the resolution of input modulations. In adapting neurons, the f -I curve is
not fixed. As we have shown, the onset f -I curve is shifted dynamically
by the stimulus. This shift partially compensates for the slow frequency
components of the stimulus. Therefore, adaptation turns a neuron into a
high-pass filter. It is the value of the effective time constant of adaptation
(see equation 4.11) and not the time constant of the adaptation dynamics
(see equation 3.1b), which separates slow and fast stimulus components. The
latter are transmitted via the adapted f -I curves. Since these are often shifted
versions of the onset f -I curve, the shape of the onset f -I curve determines
the transmission of fast components. Slow components are transmitted via
the steady-state f -I curve.

In this context, it should be noted that the observation that adaptation
“makes the transfer function of neurons logarithmic” (Engel et al., 1999)
refers to the steady-state f -I curve, which is important only for the slow
stimulus components. The same holds for the linearizing effect of adaptation
on f -I curves discussed by Ermentrout (1998).

The high-pass filter characteristics of adaptation make the response of a
neuron approximately independent of the mean stimulus intensity, which
is removed by shifting the f -I curve. Thus, subtractive adaptation imple-
ments intensity invariance. Its fidelity depends strongly on the steady-state
f -I curve. For vanishing steady-state activity, the intensity invariance is
achieved best. Note also that subtractive adaptation does not adapt the neu-
ron’s f -I curve to higher-order statistics of the stimulus (Brenner, Bialek, &
de Ruyter van Steveninck, 2000).

In order to study neural information transfer (Bialek, Rieke, de Ruyter
van Steveninck, & Warland, 1991), broadband filtered white-noise stimuli
with cut-off frequencies of more than 50 Hz are widely used. Since effective
time constants of spike-frequency adaptation are usually larger than 10 ms,
the cut-off frequency of the neuron’s transfer function is well below 16 Hz.
Thus, most of the stimulus power is above the cut-off frequency of adapta-
tion. After the stimulus onset, the neuron adapts, and shortly afterward, the
adaptation state stays approximately constant. Therefore, using such stim-
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uli does not test adaptation. This could explain a result of French, Höger,
Sekizawa, & Torkkeli (2001), who explored paired spider mechanoreceptor
neurons. One of these neurons is phasic and the other phasic tonic. Surpris-
ingly, the information transfer measured for these two types of neurons was
nearly identical. However, both neurons may differ in their steady-state f -I
curve while having similar onset f -I curves. For the broadband stimuli used
in this experiment, only properties of the onset f -I curve contribute to the
signal transmission. Therefore, the differences in the steady-state f -I curves
were not tested by the stimuli, which may have resulted in the reported
information rates.

Knowing the neuron’s firing threshold is essential for improving stimu-
lus reconstruction (Machens, Stemmler, Prinz, Krahe, Ronacher, & Herz,
2001). For stimuli with strong low-frequency components, the resulting
varying shift of the f -I curve and its firing threshold due to adaptation
would deteriorate the reconstruction. Information about the actual f -I curve
as provided by the adaptation model, 3.1, could eliminate these effects.

Let us finally note that recent studies show that shunting synaptic input
results in a shift of f -I curves. This corresponds formally to an adapta-
tion current with a fixed adaptation state. However, the noisy nature of
(balanced) synaptic input counteracts this shift and adds a strong divisive
component on the resulting f -I curve (Chance, Abbott, & Reyes, 2002).

Appendix

A.1 List of Symbols. The defining equations are identified in the fol-
lowing list:

V Membrane potential
IX = gX(V − EX) Ionic current of type X with conductance gX and

reversal potential EX
a Gating variable of an adaptation current
T Interspike interval (ISI)
f = 1/T Firing frequency
I Input current
f0(I) Onset f -I curve of the unadapted neuron
f∞(I) Steady-state f -I curve
A Adaptation state (see equation 3.10)
f (I; A) Adapted f -I curve for a given adaptation state

A
ρ̃( f ) = ρ · [1 + γ ( f )] Averaged driving force (see equation 3.8) of the

adaptation current
τ̃ ( f ) = τ · [1 + ε( f )] Averaged time constant of the adaptation gating

variable (see equation 3.15)
τ Adaptation time constant
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κ( f ) Averaged steady-state adaptation variable
a∞(V) (see equation 3.16)

A∞( f ) = ḡAcρκ( f ) steady-state adaptation strength (see equa-
tion 4.2)

τeff Effective adaptation time constant measured
from the decay of the firing frequency evoked
by a step-like stimulus

τA Time constant measured from the time evolu-
tion of A

A.2 The Neuron’s Weight Function for Small Adaptation Currents.
The superthreshold dynamics of a spike generator may be captured by a
one-dimensional phase model. The phase angle ϕ describes the movement
along a limit cycle, as determined by some function g(ϕ; I) > 0 that depends
on the phase angle and input I:

dϕ
dt

= g(ϕ; I). (A.1)

Each time the system has cycled once around the limit cycle, a spike is
elicited. Equation A.1 can be expanded at some constant value I0 and trans-
formed to a new phase variable ψ via dϕ/dψ = g(ϕ; I0),

dψ
dt

= 1 + z(ψ; I0)�I(ψ, t), (A.2)

where �I(ψ, t) = I(ϕ(ψ), t)− I0 is a small perturbation. The term

z(ψ; I0) =
∂g(ϕ(ψ);I)

∂I

∣∣∣
I=I0

g(ϕ(ψ); I0)
(A.3)

is the neuron’s response function (Ermentrout, 1996).
Let T be the period of the perturbed phase oscillator (�I �= 0) and T0

the period of the unperturbed phase oscillator (�I = 0). Integrating equa-
tion A.2 over one complete cycle of ψ (0 ≤ ψ ≤ T0) and expanding the
integrand to first order yields

T ≈ T0 −
∫ T0

0
z(ψ; I0)�I(ψ, t)dψ, (A.4)

provided |z(ψ; I0)�I(ψ, t)| � 1.
In the context of averaging the adaptation current (see equation 3.6),

I0 = I − 〈IA〉T,w and T = T0. We want to show that T is not changed by
replacing the original �IA = IA − 〈IA〉T,w by its weighted average 〈�IA〉T,w.
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This is true if the integral of the right-hand side of equation A.4 does not
change if we replace �I = �IA by 〈�IA〉T,w:

∫ T

0
z(ψ; I0)�IA(ψ)dψ !=

∫ T

0
z(ψ; I0)〈�IA(ψ)〉T,w dψ. (A.5)

Since the average 〈�IA〉T,w is constant during one period T, we obtain

〈�IA〉T,w =
∫ T

0 z(ψ; I0)�IA(ψ)dψ∫ T
0 z(ψ; I0)dψ

=:
∫ T

0
z̃(ψ; I0)�IA(ψ)dψ. (A.6)

This shows that replacing�IA by the weighted average 〈�IA〉T,w has no effect
on T if the weight w is given by the neuron’s normalized response function
z̃. The weight w(t) in equation 3.6 is then given by z̃(ψ(t)) · dψ(t)/dt.

Note that because of the assumption |z(ψ; I0)�IA(ϕ, t)| � 1, this finding
is true in the limit for small adaptation currents only. Numerical simulations
of z ·�I for the models used in this article result in values larger than one.
For such strong adaptation currents, the weight w in equation 3.6 does not
equal z̃, since z̃ applies to small perturbations only. However, the appropriate
weight w might still reflect the main qualitative properties of the neuron’s
response function.

A.3 Specification of the Conductance-Based Models

A.3.1 Modified Traub-Miles Model. The modified Traub-Miles model was
introduced by Ermentrout (1998). It is a single compartment model with one
sodium, potassium, and calcium current. We added either an M-type current
or an mAHP current to induce spike-frequency adaptation:

C
dV
dt

= −INa − IK − ICa − IL − IM − ImAHP + I

C = 1 µF/cm2.
Sodium current: INa = ḡNam3h(V − ENa), ḡNa = 100 mS/cm2, ENa =
+50 mV, dm/dt = αm(V)(1−m)−βm(V)m, αm(V) = 0.32(V+54)/(1−
exp(−(V+54)/4)),βm(V) = 0.28(V+27)/(exp((V+27)/5)−1), dh/dt =
αh(V)(1 − h) − βh(V)h, αh(V) = 0.128 exp(−(V + 50)/18), βh(V) =
4/(1 + exp(−(V + 27)/5)).

Potassium delayed-rectifier current: IK = ḡKn4(V − EK), ḡK = 80
mS/cm2, EK = −100 mV, dn/dt = αn(V)(1 − n) − βn(V)n, αn(V) =
0.032(V +52)/(1−exp(−(V +52)/5)), βn(V) = 0.5 exp(−(V +57)/40).

Calcium current: ICa = ḡCas∞(V)(V − ECa), ḡCa = 5 mS/cm2, ECa =
120 mV, s∞(V) = 1/(1 + exp(−(V + 25)/5)).

Leakage current: IL = ḡL(V − EL), ḡL = 0.1 mS/cm2, EL = −67 mV.
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M-type current: IM = ḡMw(V − EM), ḡM = 8 mS/cm2, EM = −100
mV, τw(V)dw/dt = w∞(V) − w, τw(V) = 100 ms, w∞(V) = 1/(1 +
exp(−(V + 20)/5)).

mAHP-current and calcium dynamics: ImAHP = ḡmAHPq(V−EmAHP),
ḡmAHP = 4 mS/cm2, EmAHP = −100 mV, q = [Ca]/(30 + [Ca]), d[Ca]/
dt = −0.002ICa − 0.0125[Ca].

A.3.2 Crook Model. We used the model of Crook et al. (1998) with only
the M-type current as an additional example of an adapting neuron. It is a
two-compartment model. One compartment corresponds to the soma and
is modeled by the membrane equation for the potential Vs of the soma. It
contains all the voltage-dependent currents for the generation of spikes and
possible adaptation currents. The other compartment captures the whole
dendritic tree and is described by a linear membrane equation. The poten-
tial of the second compartment is denoted by Vd. Both compartments are
coupled by the coupling current IC. Note that the input current I is injected
into the soma. Therefore, the adaptation currents are still additive to the
input current. The resting potential of the Crook model is at −77 mV:

C
dVs

dt
= −INa − IK − ICa − ILS − IM − IC/P + I/P

C
dVd

dt
= −ILD + IC/(1 − P)

C = 0.8 µF/cm2, P = 0.05.

Sodium current: INa = ḡNam2h(Vs − ENa), ḡNa = 221 mS/cm2, ENa =
+55 mV, dm/dt = αm(V)(1 − m) − βm(V)m, αm(V) = 0.32(−47.1 −
Vs)/(exp(0.25(−47.1 − Vs))− 1), βm(V) = 0.28(Vs + 20.1)/(exp((Vs +
20.1)/5)−1), dh/dt = αh(V)(1−h)−βh(V)h, αh(V) = 0.128 exp((−43−
Vs)/18), βh(V) = 4/(exp((−20 − Vs)/5)+ 1).

Potassium delayed-rectifier current: IK = ḡKn(Vs − EK), ḡK = 47 mS/
cm2, EK = −90 mV, dn/dt = αn(V)(1−n)−βn(V)n,αn(V) = 0.59(−25.1
−Vs)/(exp((−25.1−Vs)/5)−1), βn(V) = 0.925 exp(0.925−0.025(Vs +
77)).

Calcium current: ICa = ḡCas2r(Vs − ECa), ḡCa = 8.5 mS/cm2, ECa =
+120 mV, ds/dt = αs(V)(1−s)−βs(V)s,αs(V) = 0.912/(exp(−0.072(Vs
−5))+1),βs(V) = 0.0114(Vs+8.9)/(exp((Vs+8.9)/5)−1), τr(V)dr/dt =
r∞(V)− r, r∞(V) = min(exp(−(Vs + 60)/20), 1), τr(V) = 200 ms.

Soma leakage-current: ILS = ḡLS(Vs − ELS), ḡLS = 2 mS/cm2, ELS =
−70 mV.

M-type current: IM = ḡMw(Vs − EK), ḡM = 10] mS/cm2, EK = −90

mV, τw(V)dw
dt = w∞(V) − w, w∞(V) = 1/(exp(−(Vs + 35)/10) + 1),
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τw(V) = 92 exp(−(Vs + 35)/20)/(1 + 0.3 exp(−(Vs + 35)/10)).

Dendrite leakage-current: ILD = ḡLD(Vd − ELD), ḡLD = 0.05 mS/cm2,
ELD = −70]mV.

Coupling current: IC = ḡC(Vs − Vd), [ḡC = 1.1 mS/cm2.

Acknowledgments

We thank Matthias Bethge, Paola Pedarzani, and Lorenzo Cingolani for
important discussions and references. We are grateful to Hartmut Schütze,
Matthias Hennig, Astrid Franz, Bernhard Ronacher, Tim Gollisch, Christian
Machens, Raphael Ritz, Laurenz Wiskott, and Martin Stemmler who con-
tributed to this work with helpful suggestions and experimental evidence.
This work was supported by the DFG through GK 120 and Innovationskol-
leg Theoretische Biologie.

References

Benda, J., Bethge, M., Hennig, M., Pawelzik, K., & Herz, A. V. M. (2001). Spike-
frequency adaptation: Phenomenological model and experimental tests. Neu-
rocomput., 38–40, 105–110.

Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991).
Reading a neural code. Science, 252, 1854–1857.

Brenner, N., Bialek, W., & de Ruyter van Steveninck, R. (2000). Adaptive rescaling
maximizes information transfer. Neuron, 26, 695–702.

Brown, D. A., & Adams, P. R. (1980). Muscarinic supression of a novel voltage-
sensitive K+ current in a vertebrate neuron. Nature, 183, 673–676.

Brown, D. A., & Griffith, W. H. (1983). Calcium-activated outward current in
voltage-clamped hippocampal neurones of the guinea-pig. J. Physiol., 337,
287–301.

Cartling, B. (1996). A low-dimensional, time resolved and adapting model neu-
ron. Int. J. Neural Syst., 7, 237–246.

Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from back-
ground synaptic input. Neuron, 35, 773–782.

Connors, B. W., & Gutnick, M. J. (1990). Intinsic firing patterns of diverse neo-
cortical neurons. Trends Neurosci., 13, 99–104.

Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Spike frequency adapta-
tion affects the synchronization properties of networks of cortical oscillators.
Neural Comput., 10, 837–854.

Delord, B., Baraduc, P., Costalat, R., Burnod, Y., & Guigon, E. (2000). A model
study of cellular short-term memory produced by slowly inactivating potas-
sium conductances. J. Comput. Neurosci., 8, 251–273.
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French, A. S., Höger, U., Sekizawa, S.-I., & Torkkeli, P. H. (2001). Frequency
response functions and information capacities of paired spider mechanore-
ceptor neurons. Biol. Cybern., 85, 293–300.

Gustafsson, B., & Wigström, H. (1981). Shape of frequency-current curves in
CA1 pyramidal cells in the hippocampus. Brain Res., 223, 417–421.

Halliwell, J. V., & Adams, P. R. (1982). Voltage-clamp analysis of muscarinic
excitation in hippocampal neurons. Brain Res., 250, 71–92.

Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural net-
works. Neural Comput., 7, 307–337.

Helmchen, F., Imoto, K., & Sakmann, B. (1996). Ca2+ buffering and action
potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys.
J., 70, 1069–1081.

Hille, B. (1992). Ionic membranes of excitable membranes (2nd ed.). Sunderland,
Sinauer Associates.

Hirschberg, B., Maylie, J., Adelman, J. P., & Marrion, N. V. (1998). Gating of
recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen.
Physiol., 111, 565–581.

Hodgkin, A. L. (1948). The local electric changes associated with repetitive action
in a non-medullated axon. J. Physiol., 107, 165–181.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.,
117, 500–544.

Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks.
New York: Springer-Verlag.

Izhikevich, E. M. (2000). Neural excitability, spiking, and bursting. Int. J. Bif.
Chaos, 10, 1171–1266.

Jaffe, D. B., Ross, W. N., Lisman, J. E., Lasser-Ross, N., Miyakawa, H., & Johnston,
D. (1994). A model for dendritic Ca2+ accumulation in hippocampal pyrami-
dal neurons based on fluorescence imaging measurements. J. Neurophys., 71,
1065–1077.

Johnston, D., & Wu, S. M.-S. (1997). Foundations of cellular neurophysiology. Cam-
bridge, MA: MIT Press.

https://www.mitpressjournals.org/action/showLinks?system=10.1162%2F08997660152002861&citationId=p_15
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2F0006-8993%2881%2991158-6&citationId=p_19
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0006-3495%2899%2977293-0&citationId=p_12
https://www.mitpressjournals.org/action/showLinks?crossref=10.1113%2Fjphysiol.1996.sp021366&citationId=p_16
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2F0006-8993%2882%2990954-4&citationId=p_20
https://www.mitpressjournals.org/action/showLinks?crossref=10.1085%2Fjgp.111.4.565&citationId=p_24
https://www.mitpressjournals.org/action/showLinks?crossref=10.1085%2Fjgp.111.4.565&citationId=p_24
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fneco.1996.8.5.979&citationId=p_13
https://www.mitpressjournals.org/action/showLinks?crossref=10.1142%2FS0218127400000840&citationId=p_28
https://www.mitpressjournals.org/action/showLinks?crossref=10.1142%2FS0218127400000840&citationId=p_28
https://www.mitpressjournals.org/action/showLinks?crossref=10.1152%2Fjn.1989.62.3.768&citationId=p_17
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fneco.1995.7.2.307&citationId=p_21
https://www.mitpressjournals.org/action/showLinks?crossref=10.1113%2Fjphysiol.1948.sp004260&citationId=p_25
https://www.mitpressjournals.org/action/showLinks?system=10.1162%2F089976698300017106&citationId=p_14
https://www.mitpressjournals.org/action/showLinks?crossref=10.1152%2Fjn.1994.71.3.1065&citationId=p_29
https://www.mitpressjournals.org/action/showLinks?crossref=10.1007%2Fs004220100260&citationId=p_18
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0006-3495%2896%2979653-4&citationId=p_22
https://www.mitpressjournals.org/action/showLinks?crossref=10.1016%2FS0006-3495%2896%2979653-4&citationId=p_22
https://www.mitpressjournals.org/action/showLinks?crossref=10.1113%2Fjphysiol.1952.sp004764&citationId=p_26


A Universal Model for Spike-Frequency Adaptation 2563
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