from models.LIFACnoise import LifacNoiseModel
from CellData import CellData, icelldata_of_dir
from FiCurve import FICurve
from AdaptionCurrent import Adaption
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
import helperFunctions as hF
import numpy as np
from scipy.optimize import curve_fit, minimize
import functions as fu
import time
import matplotlib.pyplot as plt


def main():
    #run_test_with_fixed_model()
    #quit()

    # fitter = Fitter()
    # fmin, params = fitter.fit_model_to_values(700, 1400, [-0.3], 1, [0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3], [1370, 1380, 1390, 1400, 1410, 1420, 1430], 100, 0.02, 0.01)
    # print("calculated parameters:")
    # print(params)
    run_with_real_data()


def run_with_real_data():
    for celldata in icelldata_of_dir("./data/"):
        start_time = time.time()
        fitter = Fitter()
        fmin, parameters = fitter.fit_model_to_data(celldata)

        print(fmin)
        print(parameters)
        end_time = time.time()

        print('Fitting of cell took function took {:.3f} s'.format((end_time - start_time)))
        res_model = LifacNoiseModel(parameters)
        m_bf, m_vs, m_sc = res_model.calculate_baseline_markers(celldata.get_eod_frequency())
        m_f_values, m_f_slope = res_model.calculate_fi_markers(celldata.get_fi_contrasts(), celldata.get_eod_frequency())

        c_bf = celldata.get_base_frequency()
        c_vs = celldata.get_vector_strength()
        c_sc = celldata.get_serial_correlation(1)
        fi_curve = FICurve(celldata)
        c_f_slope = fi_curve.get_f_infinity_slope()
        c_f_values = fi_curve.f_infinities
        print("bf: cell - {:.2f} vs model {:.2f}".format(c_bf, m_bf))
        print("vs: cell - {:.2f} vs model {:.2f}".format(c_vs, m_vs))
        print("sc: cell - {:.2f} vs model {:.2f}".format(c_sc[0], m_sc[0]))
        print("f_slope: cell - {:.2f} vs model {:.2f}".format(c_f_slope, m_f_slope))
        print("f values:\n cell  -", c_f_values, "\n model -", m_f_values)

        f_b, f_zero, f_inf = res_model.calculate_fi_curve(celldata.get_fi_contrasts(), celldata.get_eod_frequency())

        fi_curve.plot_fi_curve(comp_f_baselines=f_b, comp_f_zeros=f_zero, comp_f_infs=f_inf)
        break

    pass


def run_test_with_fixed_model():
    a_tau = 0.1
    a_delta = 0.08

    parameters = {"mem_tau": 0.015,
                      "v_base": 0,
                      "v_zero": 0,
                      "threshold": 1,
                      "v_offset": -10,
                      "input_scaling": 60,
                      "delta_a": a_delta,
                      "tau_a": a_tau,
                      "a_zero": 10,
                      "noise_strength": 0.05,
                      "step_size": 0.00005}

    model = LifacNoiseModel(parameters)
    eod_freq = 750
    contrasts = np.arange(0.5, 1.51, 0.1)
    baseline_freq, vector_strength, serial_correlation = model.calculate_baseline_markers(eod_freq)
    f_infinities, f_infinities_slope = model.calculate_fi_markers(contrasts, eod_freq)
    print("Baseline freq:{:.2f}\nVector strength: {:.3f}\nSerial cor:".format(baseline_freq, vector_strength), serial_correlation)
    print("FI-Curve\nSlope: {:.2f}\nValues:".format(f_infinities_slope), f_infinities)
    fitter = Fitter()
    starting_conditions = [[0.05, 0.02, 50], [0.01, 0.08, 75], [0.02, 0.03, 70],
                           [0.02, 0.03, 70]]
    for x0 in starting_conditions:
        init_simplex = create_init_simples(x0)

        fmin, fit_parameters = fitter.fit_model_to_values(eod_freq, baseline_freq, serial_correlation, vector_strength, contrasts, f_infinities, f_infinities_slope, a_delta, a_tau, x0, init_simplex)
        print(x0)
        print(fmin)
        print("calculated parameters:")
        print(fit_parameters)

        print("ref parameters:")
        print(parameters)


def create_init_simples(x0, search_scale=2):
    dim = len(x0)
    simplex = [[x0[0]/search_scale], [x0[0]*search_scale]]
    for i in range(1, dim, 1):
        for vertex in simplex:
            vertex.append(x0[i]*search_scale)
        new_vertex = list(x0[:i])
        new_vertex.append(x0[i]/search_scale)
        simplex.append(new_vertex)

    return simplex


class Fitter:

    def __init__(self, step_size=None):
        if step_size is not None:
            self.model = LifacNoiseModel({"step_size": step_size})
        else:
            self.model = LifacNoiseModel({"step_size": 0.00005})
        # self.data = data
        self.fi_contrasts = []
        self.eod_freq = 0

        self.sc_max_lag = 1

        # expected values the model has to replicate
        self.baseline_freq = 0
        self.vector_strength = -1
        self.serial_correlation = []

        self.f_infinities = []
        self.f_infinities_slope = 0

        # fixed values needed to fit model
        self.a_tau = 0
        self.a_delta = 0

        self.counter = 0



    # mem_tau, (threshold?), (v_offset), noise_strength, input_scaling
    def cost_function(self, X, tau_a=0.1, delta_a=0.08, error_scaling=()):
        # set model parameters to the given ones:
        self.model.set_variable("mem_tau", X[0])
        self.model.set_variable("noise_strength", X[1])
        self.model.set_variable("input_scaling", X[2])
        self.model.set_variable("tau_a", X[3])
        self.model.set_variable("delta_a", X[4])
        #self.model.set_variable("tau_a", tau_a)
        #self.model.set_variable("delta_a", delta_a)

        # minimize the difference in baseline_freq first by fitting v_offset
        # v_offset = self.__fit_v_offset_to_baseline_frequency__()
        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        test_model = self.model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        self.model.set_variable("v_offset", v_offset)

        baseline_freq, vector_strength, serial_correlation = self.model.calculate_baseline_markers(self.eod_freq, self.sc_max_lag)
        f_infinities, f_infinities_slope = self.model.calculate_fi_markers(self.fi_contrasts, self.eod_freq)

        error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq)
        error_vs = abs((vector_strength - self.vector_strength) / self.vector_strength)
        error_sc = abs((serial_correlation[0] - self.serial_correlation[0]) / self.serial_correlation[0])
        error_f_inf_slope = abs((f_infinities_slope - self.f_infinities_slope) / self.f_infinities_slope) * 4
        #print("vs:", vector_strength, self.vector_strength)
        #print("sc", serial_correlation[0], self.serial_correlation[0])
        #print("f slope:", f_infinities_slope, self.f_infinities_slope)
        error_f_inf = 0
        for i in range(len(f_infinities)):
            f_inf = f_infinities[i]
            if f_inf <= 0:
                f_inf = 1
            error_f_inf += abs((f_infinities[i] - self.f_infinities[i]) / f_inf)

        error_f_inf = error_f_inf / len(f_infinities)

        # print("mem_tau:", X[0], "noise:", X[0], "input_scaling:", X[2])
        errors = [error_bf, error_vs, error_sc, error_f_inf_slope, error_f_inf]

        self.counter += 1
        if self.counter % 100 == 0:
            print("\nCost function run times: {:}\n".format(self.counter),
                  "Total error: {:.4f}\n".format(sum(errors)),
                  "Baseline frequency - expected: {:.0f}, current: {:.0f}, error: {:.3f}\n".format(self.baseline_freq, baseline_freq, error_bf),
                  "Vector strength    - expected: {:.2f}, current: {:.2f}, error: {:.3f}\n".format(self.vector_strength, vector_strength, error_vs),
                  "Serial correlation - expected: {:.2f}, current: {:.2f}, error: {:.3f}\n".format(self.serial_correlation[0], serial_correlation[0], error_sc),
                  "f-infinity slope   - expected: {:.0f}, current: {:.0f}, error: {:.3f}\n".format(self.f_infinities_slope, f_infinities_slope, error_f_inf_slope),
                  "f-infinity values:\nexpected:", np.around(self.f_infinities), "\ncurrent: ", np.around(f_infinities), "\nerror: {:.3f}".format(error_f_inf))
        return error_bf + error_vs + error_sc + error_f_inf_slope + error_f_inf

    def fit_model_to_data(self, data: CellData):
        self.calculate_needed_values_from_data(data)
        return self.fit_model()

    def calculate_needed_values_from_data(self, data: CellData):
        self.eod_freq = data.get_eod_frequency()

        self.baseline_freq = data.get_base_frequency()
        self.vector_strength = data.get_vector_strength()
        self.serial_correlation = data.get_serial_correlation(self.sc_max_lag)

        fi_curve = FICurve(data, contrast=True)
        self.fi_contrasts = fi_curve.stimulus_value
        print("Fitter: fi-contrasts", self.fi_contrasts)
        self.f_infinities = fi_curve.f_infinities
        self.f_infinities_slope = fi_curve.get_f_infinity_slope()

        f_zero_slope = fi_curve.get_fi_curve_slope_of_straight()
        self.a_delta = (f_zero_slope / self.f_infinities_slope) / 1000

        adaption = Adaption(data, fi_curve)
        self.a_tau = adaption.get_tau_real()
        print()

    def fit_model_to_values(self, eod_freq, baseline_freq, sc, vs, fi_contrasts, fi_inf_values, fi_inf_slope, a_delta, a_tau, x0=None, init_simplex=None):
        self.eod_freq = eod_freq
        self.baseline_freq = baseline_freq
        self.serial_correlation = sc
        self.vector_strength = vs
        self.fi_contrasts = fi_contrasts
        self.f_infinities = fi_inf_values
        self.f_infinities_slope = fi_inf_slope
        self.a_delta = a_delta
        self.a_tau = a_tau

        return self.fit_model(x0, init_simplex)

    def fit_model(self, x0=None, initial_simplex=None):
        self.counter = 0
        if x0 is None:
            x0 = np.array([0.02, 0.03, 70])
        if initial_simplex is None:
            initial_simplex = create_init_simples(x0)
            # fmin = minimize(fun=self.cost_function, x0=x0, args=(self.a_tau, self.a_delta), method="Nelder-Mead")
        # else:
        fmin = minimize(fun=self.cost_function, x0=x0, args=(self.a_tau, self.a_delta), method="Nelder-Mead", options={"initial_simplex": initial_simplex})

        return fmin, self.model.get_parameters()


if __name__ == '__main__':
    main()