
1 To-note

other models/papers to P-units:
Bastian 1981a Electrolocation I. How the electroreceptors of Apteronotus albifrons

code for moving objects and other electrical stimuli
(Benda and Herz, 2003)

2 Introduction

1. electric fish

(a) general: habitat,

(b) as model animal for ethology

(c) electric organ + eod

(d) sensory neurons p- and t(?)-type

2. sensory perception

(a) receptor → heterogenic population

(b) further analysis limited by what receptors code for - P-Units encoding

(c) p-type neurons code AMs

3. goal be able to simulate heterogenic population to analyze full coding properties →
many cells at the same time needed→ only possible in vitro/ with model simulations

4. Possible to draw representative values for model parameters to generate a population
?

2.1 Apteronotus leptorynchus

• to mention: size range, tank conditions,

• continuous sinusoidal electric organ discharge EOD with near constant amplitude
and frequency (Moortgat et al. 1998)

• EOD carrier signal for AMs caused by nearby objects like prey or other electric fish

• prey stimuli are dominated by low frequencies

2.2 general P-unit notes

• consist of 25-40 receptor cells and a nerve fiber that makes synaptic contact to
at least 16 active neurotransmitter release sites per receptor cell. (M.V.L. Ben-
nett, C. Sandri, K. Akert, Fine Structure of the tuberous electroreceptor of the
high-frequency electric ”sh Sternachus albifrons (gymnotiformes), J. Neurocytol. 18
(1989) 265.)

• most abundant tuberous receptor

• spikes in probabilistic manner to upward phase of EOD
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• important characterization P-value probability of spiking per EOD cycle estimated
as p-unit frequency divided by EOD frequency typical values 0.1-0.6 (Bastian 1981a,
Xu et al 1997)

• rapidly adapting (Benda et al. (2005) Xu et al. (1996)) often studied with SAMs or
RAMs

• can predict up to 80% of the AM using reverse correlation and coherence but no
obvious decoding mechanism

• linear coders of intensity, additive noise models are suitable Gussin et al. 2007

• ISI correlations important to detect both slow and fast varying stimuli (Chacron
et al., 2001a) The negative correlation reduce low frequency noise and information
is preserved at higher/central neurons (Chacron et al., 2005b)

2.3 neural and population coding

2.4 nerve recordings

• sample descriptions in: Hernriettes phd, Gussin et al. 2007, Benda et al. 2005

3 Mat&Met

1. Data generation

(a) How data was measured / which data used

(b) How data was chosen -¿ at least 30s baseline, 7 contrasts with 7 trials

(c) experimental protocols were allowed by XYZ (before 2012: All experimental
protocols were approved and complied with national and regional laws (file
no. 55.2-1-54-2531-135-09). between 2013-2016 ZP 1/13 Regierungspräsidium
Tübingen and after 2016 ZP 1/16 Regierungspräsidium Tübingen)

(d) description of data -¿ Baseline properties, FI-Curve with images made from
cells

(e) make a point of using also bursty cells as part of what is new in this work!

2. behavior parameters:

(a) which behaviors were looked at / calculated and why (bf, vs, sc, cv, fi-curve...)

(b) how exactly were they calculated in the cell and model

(c) stimulus protocols

3. Construction of model

(a) Explain general LIF

(b) parameters explanation, dif. equations

(c) Explain addition of adaption current

(d) note addition of noise + factor for the independence from step size

(e) addition of refractory period
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(f) check between alpha in fire-rate model adaption and a-delta in LIFAC

4. Fitting of model to data

(a) which variables where determined beforehand (None, just for start parameters)

(b) which variables where fit

(c) What method was used (Nelder-Mead) and why/(how it works?)

(d) fit routine ? (currently just all at the same time)

3.1 Equations characterization

Baseline
p-Value:

p =
neuronfrequency

EODfrequency
(1)

coefficient of variation:

CV =
STD(ISI)

〈ISI〉
(2)

serial correlation: (TODO: check!)

sci =
〈ISIk+jISIk〉 − 〈ISIk〉2

V AR(ISI)
(3)

burstiness: (TODO: what definition?)
vector strength:
FI-Curve:

3.2 model construction

• PIF - LIF - LIFAC - LIFAC + refractory period

• explain why adaption current and not a dynamic threshold: chosen AC other pos-
sibilities(dyn. thresh. voltage hyperpol.) why AC is better.

• what things could be the physiological base for the different parts of the model

4 Results

• Results fitting

– Errors of model behavior to cell behavior

– Comparison model-vs-cell behavior distribution

– correlations between parameters and behavior

– correlation between final error and behavior parameters of the cell → hard to
fit cell ”types”

–
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– comparison SAM stimuli response

• ”working with the models”

– model parameter distribution

– model parameter correlations

– (TODO: drawing random models ????)

5 Discussion

• todo
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6 Paper

6.1 Limits of linear rate coding of dynamic stimuli by electrore-
ceptor afferents

Daniel Gussin, Jan Benda, Leonard Maler, 2007, J neurophysiol (Gussin et al., 2007)
P-units may code for the intensity and slope of the stimulus and if the higher neuronal

structures can separate these two parts they can detect the very weak signals they use in
their behavior.

6.1.1 Introduction

• definition of neural code needs map between external signal and resulting spike trains
AND demonstration that downstream neural circuits can interpret this mapping and
therefore direct behavioral output.

original code often assumed to be linear rate coding needs only temporal summation
over some time window to decode

linear code breaks down for dynamic signals and neurons with time-dependent con-
ductances (adapting currents)!

then more sophisticated methods like spike-triggered stimulus averages (STA) are
used to estimate the linear encoding of signals but no obvious decoding mechanisms
are implied.

6.2 Simple models of bursting and non-bursting P-type elec-
troreceptors

Maurice J. Chacron, Andre H Longtin , Leonard Maler, 2001
(Chacron et al., 2001b)

• simple math. model of P-units for just the baseline behavior.

• uses dynamic threshold, abs refractory period, for bursty cells added a delayed
depolarization current

• wasn’t ”fitted” to data just compared, chosen and fixed(?) parameters

6.3 Negative Interspike Interval Correlations Increase the neu-
ronal capacity for encoding time-dependent stimuli

Maurice J. Chacron, Andre H Longtin , Leonard Maler, 2001
(Chacron et al., 2001a)

• Based on baseline behavior and AM stimuli

• Two different encoding might be used for low-frequency and high-frequency signals.

• low-frequency: rate-code (mean firing frequency) in a counting time that reduces
variability of the spike train (minimum in spike train variability caused by negative
ISI correlations )

• high-frequency: spike timing
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6.4 Electroreceptor neuron dynamics shape information trans-
fer

Maurice J. Chacron, Leonard Maler, Joseph Bastian, 2005
(Chacron et al., 2005b)

• increased low frequency information is contained in the spike trains because of the
negative serial correlation. This increased information is still available in central
neurons.

• conventional tuning curves don’t capture the contained low-freq information and
predict bad tuning for low frequencies, information tuning curves show the good
coding of low frequencies.

• ISI correlations have a noise shaping effect that increases the low-freq coding po-
tential

6.5 Characterization and modeling of P-type electrosensory af-
ferent responses to amplitude modulations in wave-type elec-
tric fish

M.E. Nelson, Z. Xu, J.R. Payne, 1997
(Nelson et al., 1997) (TODO: go over once more how does their model work)

• quantitative model of baseline and response to AM stimuli

• not a LIF model

6.6 Non renewal statistics of electrosensory afferent spike trains:
Implications for detection of weak sensory signals

Rama Ratman and Mark E. Nelson, 2000
(Ratnam and Nelson, 2000)

•

6.7 Delayed excitatory and inhibitory feedback shape neural in-
formation transmission

Maurice J. Chacron, Andre H Longtin , Leonard Maler, 2005
(Chacron et al., 2005a)

•

6.8 Encoding of Communication Signals in Heterogeneous Pop-
ulations of Electroreceptors

Henriette Walz PHD 2013 (Walz, 2013)

6



References

Benda, J. and Herz, A. V. (2003). A universal model for spike-frequency adaptation.
Neural computation, 15(11):2523–2564.

Benda, J., Longtin, A., and Maler, L. (2005). Spike-frequency adaptation separates tran-
sient communication signals from background oscillations. Journal of Neuroscience,
25(9):2312–2321.

Chacron, M. J., Longtin, A., and Maler, L. (2001a). Negative interspike interval corre-
lations increase the neuronal capacity for encoding time-dependent stimuli. Journal of
Neuroscience, 21(14):5328–5343.

Chacron, M. J., Longtin, A., and Maler, L. (2001b). Simple models of bursting and
non-bursting p-type electroreceptors. Neurocomputing, 38:129–139.

Chacron, M. J., Longtin, A., and Maler, L. (2005a). Delayed excitatory and inhibitory
feedback shape neural information transmission. Physical Review E, 72(5):051917.

Chacron, M. J., Maler, L., and Bastian, J. (2005b). Electroreceptor neuron dynamics
shape information transmission. Nature neuroscience, 8(5):673–678.

Gussin, D., Benda, J., and Maler, L. (2007). Limits of linear rate coding of dynamic
stimuli by electroreceptor afferents. Journal of neurophysiology, 97(4):2917–2929.

Nelson, M., Xu, Z., and Payne, J. (1997). Characterization and modeling of p-type
electrosensory afferent responses to amplitude modulations in a wave-type electric fish.
Journal of Comparative Physiology A, 181(5):532–544.

Ratnam, R. and Nelson, M. E. (2000). Nonrenewal statistics of electrosensory afferent
spike trains: implications for the detection of weak sensory signals. Journal of Neuro-
science, 20(17):6672–6683.

Walz, H. (2013). Encoding of Communication Signals in Heterogeneous Populations of-
Electroreceptors. PhD thesis, Eberhard-Karls-Universität Tübingen.
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