import matplotlib.pyplot as plt import numpy as np import helperFunctions as hf from models.FirerateModel import FirerateModel from models.LIFACnoise import LifacNoiseModel from stimuli.StepStimulus import StepStimulus from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus import functions as fu def main(): # test_firerate_model() # test_stepsize_influence() test_lifac_noise() def test_stepsize_influence(): # model = LIFACModel() model = FirerateModel() stimulus = StepStimulus(0.5, 1, 15) for step_size in [0.001, 0.1]: model.set_variable("step_size", step_size) model.simulate(stimulus, 2) # y = model.get_voltage_trace() y = model.get_frequency() plt.plot(np.arange(0, 2, step_size/1000), y, label="step_size:" + str(step_size)) plt.xlabel("time in seconds") plt.ylabel("Voltage") plt.title("Voltage in the LIFAC-Model with different step sizes") plt.legend() plt.show() plt.close() def test_firerate_model(): model = FirerateModel() duration = 0.2 stimulus = StepStimulus(duration/2, duration, 10) model.simulate(stimulus, duration*2) plt.plot(np.arange(0, duration*2, model.get_sampling_interval()/1000), model.get_frequency()) plt.show() def test_lifac_noise(): model = LifacNoiseModel() start = 0.2 duration = 30 total_time = duration + 2*start step_size = model.get_parameters()["step_size"]/1000 time = np.arange(0, total_time, step_size) stimulus = SinusAmplitudeModulationStimulus(700, 0.2, 10, 20, start, duration) model.simulate(stimulus, total_time) fig, axes = plt.subplots(nrows=3, sharex="col") sparse_time = np.arange(0, total_time, 1/5000) axes[0].plot(sparse_time, [stimulus.value_at_time_in_s(x) for x in sparse_time], label="given stimulus") axes[0].plot(sparse_time, [fu.rectify(stimulus.value_at_time_in_s(x)) for x in sparse_time], label="seen stimulus") axes[0].set_title("Stimulus") axes[0].set_ylabel("stimulus strength") axes[0].legend() axes[1].plot(time, model.get_voltage_trace()) axes[1].set_title("Voltage trace") axes[1].set_ylabel("voltage") t, f = hf.calculate_isi_frequency(model.get_spiketimes(), 0, step_size) axes[2].plot(t, f) axes[2].set_title("ISI frequency trace") axes[2].set_ylabel("Frequency") spiketimes_small_step = model.get_spiketimes() model.set_variable("step_size", 0.02) model.simulate(stimulus, total_time) print(model.get_adaption_trace()[int(0.1/(0.01/1000))]) step_size = model.get_parameters()["step_size"] / 1000 time = np.arange(0, total_time, step_size) t, f = hf.calculate_isi_frequency(model.get_spiketimes(), 0, step_size) axes[1].plot(time, model.get_voltage_trace()) axes[2].plot(t, f) spiketimes_big_step = model.get_spiketimes() print("CV:") print("small step:", hf.calculate_coefficient_of_variation(spiketimes_small_step)) print("big step:", hf.calculate_coefficient_of_variation(spiketimes_big_step)) plt.show() plt.close() max_lag = 5 x = np.arange(1, max_lag+1, 1) serial_cor_small = hf.calculate_serial_correlation(spiketimes_small_step, max_lag) serial_cor_big = hf.calculate_serial_correlation(spiketimes_big_step, max_lag) print(serial_cor_small) print(serial_cor_big) plt.plot(x, serial_cor_small, 'o', label='small step',) plt.plot(x, serial_cor_big, 'o', label='big step') plt.ylim(-1, 1) plt.legend() plt.show() plt.close() bins = np.arange(0, max(np.diff(spiketimes_small_step)), 0.0001) plt.hist(np.diff(spiketimes_small_step), bins=bins, alpha=0.5) plt.hist(np.diff(spiketimes_big_step), bins=bins, alpha=0.5) plt.show() if __name__ == '__main__': main()