import numpy as np from warnings import warn from thunderfish.eventdetection import detect_peaks, threshold_crossing_times, threshold_crossings def merge_similar_intensities(intensities, spiketimes, trans_amplitudes): i = 0 diffs = np.diff(sorted(intensities)) margin = np.mean(diffs) * 0.6666 while True: if i >= len(intensities): break intensities, spiketimes, trans_amplitudes = merge_intensities_similar_to_index(intensities, spiketimes, trans_amplitudes, i, margin) i += 1 # Sort the lists so that intensities are increasing x = [list(x) for x in zip(*sorted(zip(intensities, spiketimes), key=lambda pair: pair[0]))] intensities = x[0] spiketimes = x[1] return intensities, spiketimes, trans_amplitudes def merge_intensities_similar_to_index(intensities, spiketimes, trans_amplitudes, index, margin): intensity = intensities[index] indices_to_merge = [] for i in range(index+1, len(intensities)): if np.abs(intensities[i]-intensity) < margin: indices_to_merge.append(i) if len(indices_to_merge) != 0: indices_to_merge.reverse() trans_amplitude_values = [trans_amplitudes[k] for k in indices_to_merge] all_the_same = True for j in range(1, len(trans_amplitude_values)): if not trans_amplitude_values[0] == trans_amplitude_values[j]: all_the_same = False break if all_the_same: for idx in indices_to_merge: del trans_amplitudes[idx] else: raise RuntimeError("Trans_amplitudes not the same....") for idx in indices_to_merge: spiketimes[index].extend(spiketimes[idx]) del spiketimes[idx] del intensities[idx] return intensities, spiketimes, trans_amplitudes def all_calculate_mean_isi_frequencies(spiketimes, time_start, sampling_interval): times = [] mean_frequencies = [] for i in range(len(spiketimes)): trial_times = [] trial_means = [] for j in range(len(spiketimes[i])): time, isi_freq = calculate_isi_frequency(spiketimes[i][j], time_start, sampling_interval) trial_means.append(isi_freq) trial_times.append(time) time, mean_freq = calculate_mean_frequency(trial_times, trial_means) times.append(time) mean_frequencies.append(mean_freq) return times, mean_frequencies # TODO remove additional time vector calculation! def calculate_isi_frequency(spiketimes, time_start, sampling_interval): first_isi = spiketimes[0] - time_start isis = [first_isi] isis.extend(np.diff(spiketimes)) time = np.arange(time_start, spiketimes[-1], sampling_interval) full_frequency = [] i = 0 for isi in isis: if isi == 0: warn("An ISI was zero in FiCurve:__calculate_mean_isi_frequency__()") continue freq = 1 / isi frequency_step = int(round(isi * (1 / sampling_interval))) * [freq] full_frequency.extend(frequency_step) i += 1 if len(full_frequency) != len(time): if abs(len(full_frequency) - len(time)) == 1: warn("FiCurve:__calculate_mean_isi_frequency__():\nFrequency and time were one of in length!") if len(full_frequency) < len(time): time = time[:len(full_frequency)] else: full_frequency = full_frequency[:len(time)] else: print("ERROR PRINT:") print("freq:", len(full_frequency), "time:", len(time), "diff:", len(full_frequency) - len(time)) raise RuntimeError("FiCurve:__calculate_mean_isi_frequency__():\n" "Frequency and time are not the same length!") return time, full_frequency def calculate_mean_frequency(trial_times, trial_freqs): lengths = [len(t) for t in trial_times] shortest = min(lengths) time = trial_times[0][0:shortest] shortend_freqs = [freq[0:shortest] for freq in trial_freqs] mean_freq = [sum(e) / len(e) for e in zip(*shortend_freqs)] return time, mean_freq def mean_freq_of_spiketimes_after_time_x(spiketimes, time_x): """ Calculates the mean frequency of the portion of spiketimes that is after last_x_time """ idx = -1 if time_x < spiketimes[int(len(spiketimes)/2)]: for i in range(len(spiketimes)): if spiketimes[i] > time_x: idx = i + 1 break else: for i in range(len(spiketimes) - 1, -1, -1): if spiketimes[i] < time_x: idx = i + 1 break all_isi = np.diff(spiketimes[idx:]) / 1000 if len(all_isi) < 5: return 0 mean_freq = np.mean([1 / isi for isi in all_isi]) return mean_freq # @jit(nopython=True) # only faster at around 30 000 calls def calculate_coefficient_of_variation(spiketimes: np.ndarray) -> float: # CV (stddev of ISI divided by mean ISI (np.diff(spiketimes)) isi = np.diff(spiketimes) std = np.std(isi) mean = np.mean(isi) return std/mean # @jit(nopython=True) # maybe faster with more than ~60 000 calls def calculate_serial_correlation(spiketimes: np.ndarray, max_lag: int) -> np.ndarray: isi = np.diff(spiketimes) if len(spiketimes) < max_lag + 1: raise ValueError("Given list to short, with given max_lag") cor = np.zeros(max_lag) for lag in range(max_lag): lag = lag + 1 first = isi[:-lag] second = isi[lag:] cor[lag-1] = np.corrcoef(first, second)[0][1] return cor def calculate_eod_frequency(time, eod): up_indicies, down_indicies = threshold_crossings(eod, 0) up_times, down_times = threshold_crossing_times(time, eod, 0, up_indicies, down_indicies) durations = np.diff(up_times) mean_duration = np.mean(durations) return 1/mean_duration def calculate_vector_strength(times, eods, v1_traces): # Vectorstaerke (use EOD frequency from header (metadata)) VS > 0.8 # dl.iload_traces(repro='BaselineActivity') relative_spike_times = [] eod_durations = [] if len(times) == 0: print("-----LENGTH OF TIMES = 0") for recording in range(len(times)): spiketime_idices = detect_spikes(v1_traces[recording]) rel_spikes, eod_durs = eods_around_spikes(times[recording], eods[recording], spiketime_idices) relative_spike_times.extend(rel_spikes) eod_durations.extend(eod_durs) print(__vector_strength__(np.array(rel_spikes), np.array(eod_durs))) relative_spike_times = np.array(relative_spike_times) eod_durations = np.array(eod_durations) return __vector_strength__(relative_spike_times, eod_durations) def detect_spikes(v1, split=20, threshold=3): total = len(v1) all_peaks = [] for n in range(split): length = int(total / split) first_index = n * length last_index = (n + 1) * length std = np.std(v1[first_index:last_index]) peaks, _ = detect_peaks(v1[first_index:last_index], std * threshold) peaks = peaks + first_index all_peaks.extend(peaks) all_peaks = np.array(all_peaks) return all_peaks def calculate_phases(relative_spike_times, eod_durations): phase_times = np.zeros(len(relative_spike_times)) for i in range(len(relative_spike_times)): phase_times[i] = (relative_spike_times[i] / eod_durations[i]) * 2 * np.pi return phase_times def eods_around_spikes(time, eod, spiketime_idices): eod_durations = [] relative_spike_times = [] for spike_idx in spiketime_idices: start_time, end_time = search_eod_start_and_end_times(time, eod, spike_idx) eod_durations.append(end_time-start_time) spiketime = time[spike_idx] relative_spike_times.append(spiketime - start_time) return relative_spike_times, eod_durations def search_eod_start_and_end_times(time, eod, index): # TODO might break if a spike is in the cut off first or last eod! # search start_time: previous = index working_idx = index-1 while True: if eod[working_idx] < 0 < eod[previous]: first_value = eod[working_idx] second_value = eod[previous] dif = second_value - first_value part = np.abs(first_value/dif) time_dif = np.abs(time[previous] - time[working_idx]) start_time = time[working_idx] + time_dif*part break previous = working_idx working_idx -= 1 # search end_time previous = index working_idx = index + 1 while True: if eod[previous] < 0 < eod[working_idx]: first_value = eod[previous] second_value = eod[working_idx] dif = second_value - first_value part = np.abs(first_value / dif) time_dif = np.abs(time[previous] - time[working_idx]) end_time = time[working_idx] + time_dif * part break previous = working_idx working_idx += 1 return start_time, end_time def __vector_strength__(relative_spike_times: np.ndarray, eod_durations: np.ndarray): # adapted from Ramona n = len(relative_spike_times) if n == 0: return -1 phase_times = (relative_spike_times / eod_durations) * 2 * np.pi vs = np.sqrt((1 / n * np.sum(np.cos(phase_times))) ** 2 + (1 / n * np.sum(np.sin(phase_times))) ** 2) return vs