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Abstract

Weakly electric "sh use phase and amplitude modulations of their electric organ discharge to
communicate and to capture prey (electrolocation). P-type electroreceptors, also known as
probability coders, on their skin can detect extremely weak signals. We analyse baseline "ring
characteristics of these receptors from experimental data, and present mathematical models for
the "ring activity of both bursting and non-bursting units. � 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Weakly electric "sh generate an electric "eld through their electric organ discharge
(EOD) in order to communicate and detect prey. Nearby objects with a conductivity
di!erent than that of surrounding water cause distortions in the "eld; the ensuing
electric "eld amplitude modulations (AMs) change the potential across the "sh's skin.
Highly sensitive P-type electroreceptors encode these modulations into trains of
action potentials to be analyzed by the higher brain centers (see [11,15] for a review).
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The unit consists of 25}40 receptor cells and a nerve "ber that makes synaptic contact
to at least 16 active neurotransmitter release sites per receptor cell [2]. Although
intra-cellular recordings are not yet possible on such cells, spikes can be recorded from
their axons (see e.g. [14]). We are interested in the activity of P-units in the gymnoti-
form species Apteronotus Leptorhynchus (Brown Ghost Knife Fish). Their EOD is
sinusoidal in nature (frequency 600}1200 Hz) and acts as a carrier signal for AMs
caused by nearby objects [1]. Some models have already been proposed [10,7]. The
lack of experimental data makes parameter estimation for detailed models [7] very
di$cult. Further, even though the detailed model in [7] reproduces tuning curve data,
it does not display the pattern of skipped phase locked "rings seen experimentally.
The model in [10] accounts for the linear properties of AM coding; however, it has no
"ring dynamics and does not include refractory e!ects. A recent model [3] of the "ring
dynamics successfully accounts for the baseline "ring interval distribution and cor-
relations.

From detailed analysis of the available experimental data (Section 2), we present
a modi"ed version of the model in [3] for non-bursting a!erents (Section 3). We
further show how an extended version of our model can lead to bursting behavior
observed experimentally in certain P-units (Section 4).

2. Experimental data

P-type electroreceptors have been classi"ed into two groups: Bursters (B) and
non-bursters (NB) [14]. We show in Figs. 1 and 2 data obtained for both types when
no stimulus is applied (i.e. when the receptor is only driven by the EOD of the "sh
without modulations) (data courtesy of Mark Nelson, Beckmann Institute, Illinois,
USA).

One can see that the interspike interval histograms (Figs. 1a and 2a) (ISIHs) show
Gaussian shaped modes at multiples of the EOD period in both cases; this is seen
because the unit skips a random number of EOD cycles between each action
potential. Furthermore, each unit can "re at most once per EOD cycle. This implies
that the a!erent's "rings are phase-locked [4] to the EOD signal and that there is at
most once spike per EOD cycle. For NB units, the ISIH envelope is approximately
Gaussian. In addition to this, B units show a very prominent mode at 1 EOD
period which implies that when an action potentials is "red, it is followed by one or
more "rings on the next EOD cycles followed by a period of quiescence. This results in
a bursting pattern.

The return maps (Figs. 1b and 2b) show clusters centered at integer multiples of
the EOD period as expected from phase-locking. Furthermore, the negatively
sloped elongation observed in both cases is also a signature of phase-locking [8].
This implies that if a "ring leads/lags the mean EOD phase, then on average the next
"ring will lag/lead the mean EOD phase so that the "rings keep in step with the
EOD.

Finally, we see (Figs. 1c and 2c) that both units exhibit negative serial correlation
coe$cients (SCC) at low lags. These are expected from refractory e!ects at such high

130 M.J. Chacron et al. / Neurocomputing 38}40 (2001) 129}139



Fig. 1. Experimental data consisting of 10 000 con-
secutive interspike intervals from a non-bursty unit
(courtesy of Mark Nelson, Beckmann Institute,
Illinois, USA). Time is in EOD cycles; the EOD
frequency was 755 Hz. (a) ISIH, (b) return map, (c)
serial correlation.

Fig. 2. Experimental data consisting of 10 000 con-
secutive interspike intervals from a bursty unit
(courtesy of Mark Nelson, Beckmann Institute,
Illinois, USA). 10 000 ISIs were analysed. Time is in
EOD cycles, the EOD frequency was 850 Hz. (a)
ISIH, (b) return map, (c) serial correlation.

"ring rates [5,12]. As mentioned above, intra-cellular recordings are not yet possible
for such cells. However, there are a number of plausible physiological mechanisms
that could account for this refractoriness. They include: slow sodium cumulative
inactivation [9], synaptic desensitization [6], or other slow negative adaptation
currents [13].

Models must thus reproduce the following features of experimental data: phase-
locking with random skipping to sinusoidal input, as well as relative refractoriness
that persists for several EOD cycles.
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3. The model

We start with the leaky integrate and "re (LIF) model [12] described by the
equation

<Q "!
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where < is the membrane potential, �
�
is the membrane time constant and C is the

capacitance (we set C"1). When < reaches a constant threshold �, it is reset to zero
and a spike is said to have occurred. It is important to note that such a model is
memoryless in the sense that ISIs are uncorrelated when driven by periodic input
and/or white noise.

We note that all the aforementionedmechanisms that could account for the relative
refractoriness seen experimentally lead to an increase in the e!ective voltage-threshold
distance. We thus choose as in [3] to make the threshold a dynamical variable
governed by

�Q "(�
�
!�)/�� , (2)

where �
�

is an equilibrium value towards which � relaxes exponentially with time
constant �� . When< equals �, it is reset to zero as in the standard LIF model while � is
incremented by a "xed amount �� to simulate refractoriness. Furthermore, < is kept
constant for the duration of the absolute refractory period ¹

�
. We thus have a leaky

integrate-and-"re with dynamic threshold (LIFDT) model. We note that relative
refractoriness can be modeled in other ways. For example, one could model this using
voltage hyperpolarisation as in [5] or through negative adaptation currents [13].

Finally, we hypothesize periodic input in the form of a recti"ed sine wave [3]:
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where H is the Heaviside function to account for recti"cation while A is the EOD
amplitude and f is the EOD frequency. To account for variability seen in the spike
train, we add synaptic noise in the form of two Ornstein}Uhlenbeck (OU) processes
OU

�
and OU

�
with zero mean and variances D

�
/�

���
and D

�
/�

���
. This is di!erent

from [3] where OU
�
was replaced by Gaussian white noise that is constant over one

EOD cycle. Our results here (see below) also agree with data; thus our stochastic
dynamical model does not depend sensitively on the correlation time of the noise
process OU

�
, as long as it can be considered `fasta as compared to the model

dynamics.
We show in Fig. 3a the deterministic dynamics (D

�
"D

�
"0) obtained with the

model. Parameters have been adjusted so that 5:1 (1 spike every 5 EOD cycles)
periodic "ring occurs (I

�
"I

���
); this is clearly a suprathreshold forcing regime. In the

stochastic case (Fig. 3b), we see that we have a phase-locked skipping pattern. Let us
denote by �

�
the mean value of � immediately after a spike. We see that if an ISI is

shorter than average (I
�
in Fig. 3b), then � after the spike that ends I

�
is greater than �

�
,

consequently the next ISI (I
���

) will have a greater probability of being longer than
average since � will take longer to decay to equilibrium. The converse statement is
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Fig. 3. Voltage (lower curve) and threshold (upper curve) trace obtained with the model (Eqs. (1)}(3)).
(a) without noise, (b) with noise. Parameters are (time is in EOD cycles): dt"0.0025, ¹

�
"1, f"1000 Hz,

A"0.2613, �
�
"0.04, ��"0.05, �

�
"1, ��"8.5, D

�
"8, �

���
"0.025, �

���
"0.075, D

�
"0.

also true. This mimicks cumulative refractoriness and thus gives rise to a negative
serial correlation coe$cient (SCC) at lag one. Note that the relative refractoriness is
deterministic in nature because the threshold carries the memory. However, without
noise to perturb the 5 : 1 periodic pattern, the negative correlations carried by this
memory would not be revealed.

We now show results obtained with the model for physiologically realistic para-
meters in Fig. 4. Comparing with the data in Fig. 1, we see that the main features are
well reproduced also by our simple model: (1) the ISIH (Fig. 4a) shows Gaussian
shaped modes centered at integer multiples of the EOD period with a Gaussian
envelope; (2) the return map (Fig. 4b) shows negatively sloped clusters as in the data;
and (3) adjacent ISIs are negatively correlated (Fig. 4c). Our results are similar to
those obtained in [3]. Note also that the model exhibits monotonically increasing
tuning curves in agreement with experimental data [15] (Fig. 5).
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Fig. 4. Model "ring statistics using 10 000 ISIs. (a) ISIH, (b) return map, (c) serial correlation. Parameters
have the same values as in Fig. 3.

4. Extending the model to include bursting

We model bursting by incorporating a current that facilitates the occurrence of
another spike following an action potential. Speci"cally, we introduce a delayed
transient depolarizing current I

�
that works as follows: after a spike has occurred, we

wait for a time interval d after which it activates instantaneously and the onset of
inactivation is modeled by exponential decay. The delay d may mimick the mean
activation time of this transient current. I

�
obeys the equation:
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Thus, we increment I
�
by �I

�
at time t

�	�

#d (activation), and then allow exponential

decay to zero (inactivation) with time constant �
�
until the next spike occurs. We now
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Fig. 5. Tuning curve obtained with the model. Each point is obtained by "nding the lowest amplitude
A giving rise to 1:1 "ring for di!erent EOD frequencies. Parameters have the same value as in Fig. 3.

take as input current the sum of I
���

in Eq. (3) and I
�
in Eq. (4). Results obtained with

periodic forcing and noise are shown in Fig. 6.
We can distinguish a burst (see arrow) consisting of three spikes "red on consecut-

ive EOD cycles. The burst is initiated when � is low and thus I
�

can bring < to
threshold on successive EOD cycles as seen by the series of sharp impulses. The
threshold is higher after each action potential, and bursting thus terminates when � is
too high. Our model is thus based on the joint action of spike activated transient
depolarizing currents and negative adaptation currents. These could be responsible
for the intrinsic bursting behavior seen in such cells.

We show the results obtained with this model in Fig. 7 and compare them
with the experimental data of Fig. 2. We see that the ISIH (Fig. 7a) has a promi-
nent mode at one EOD period as in the data: the bursty P-unit thus tends to "re
packets (bursts) of action potentials followed by quiescence as mentioned above.
The return map (Fig. 7b) shows negatively sloped clusters as does the map for
the data. Furthermore, we see that adjacent ISIs are negatively correlated
(Fig. 7c).

In conclusion, this simple extension to our two-dimensional generic model of "ring
in non-bursty P-units exhibits, for a suitable choice of parameters values, the basic
bursting properties seen experimentally.
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Fig. 6. Voltage (lower curve) and threshold (upper curve) trace obtained with the extended model (Eqs.
(1)}(4)) exhibiting a bursting pattern. Parameters are the same as in Fig. 3 except: ��"0.1, ��"4.7,
D

�
"19.531, D

�
"0.328, d"1, �I

�
"1.4, �

�
"0.25.

5. Discussion

We have presented models that reproduce the baseline "ring characteristics for
both bursting and non-bursting P-type electroreceptors of the weakly electric "sh
Apteronotus Leptorhynchus. The negative ISI correlations exhibited by the experi-
mental data in both cases are a signature of refractoriness that persists for several
EOD cycles. We have accounted for this in both cases by making the threshold vary
with time and increasing the voltage-threshold distance immediately after a spike.
This can model several physiological mechanisms [6,9,13]. Other models for adapta-
tion [13,5] could also be combined with recti"ed periodic forcing to reproduce the
data. However, the time constant of the refractory process is a key element of our
model and underlies the approximately Gaussian envelope of the multimodal ISIH,
a feature speci"c to electroreceptors.
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Fig. 7. Firing statistics of the extended model (Eqs. (1)}(4)) using 10 000 ISIs. (a) ISIH, (b) return map, (c)
serial correlation. Parameters have the same value as in Fig. 6.

For both units, the dynamics are in the suprathreshold regime because periodic
"ring occurs in the absence of noise. The model predicts that the random skipping
pattern seen experimentally results from noise added to the voltage dynamics. We
obtain bursting by adding to the NBmodel a current that activates after a small delay
following each action potential. The burst terminates when the threshold is too high
and initiate again when it is low enough. Again, results from our extended model
reproduce the experimental data. This shows that P-a!erents can be modeled with
a simple three variable system driven by noise. These models were designed to be
computationally e$cient while still reproducing the main features of the experimental
data, since we are currently modeling population responses in the electrosensory
periphery.
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