
Sensory adaptation
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Adaptation occurs in a variety of forms in all sensory

systems, motivating the question: what is its purpose? A

productive approach has been to hypothesize that

adaptation helps neural systems to efficiently encode

stimuli whose statistics vary in time. To encode efficiently,

a neural system must change its coding strategy, or

computation, as the distribution of stimuli changes. Information

theoretic methods allow this efficient coding hypothesis

to be tested quantitatively. Empirically, adaptive processes

occur over a wide range of timescales. On short

timescales, underlying mechanisms include the contribution

of intrinsic nonlinearities. Over longer timescales, adaptation

is often power-law-like, implying the coexistence of

multiple timescales in a single adaptive process. Models

demonstrate that this can result from mechanisms within

a single neuron.
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Adaptation as efficient coding
Barlow’s efficient coding hypothesis suggests that,

given a finite capacity to transmit information, neural

systems employ an optimally efficient coding strategy to

represent the inputs that they typically process ([1–3],

Box 1). However, when collected over relatively short

time or length scales, the local statistics of many natural

stimuli differ greatly from their global distribution.

For example, luminance and contrast in natural visual

environments vary over orders of magnitude across time

in a day or across space in a complex scene. A sensory

system that matched its distribution of outputs to the

global distribution of stimuli would then be inefficient in

transmitting the stimulus’ local distribution. Under these

circumstances, one might expect the system’s coding

strategy to adapt to local characteristics of the stimulus

statistics.
www.sciencedirect.com
Recent experimental designs have begun to test the

efficient coding hypothesis in the context of adaptation.

In these experiments, the distribution of a random time-

varying stimulus, rather than a single stimulus parameter,

is varied. This design allows one to examine the coding

strategy that the neural system uses to represent an entire

stimulus distribution and to relate changes in coding

strategy to changes in stimulus distribution. The frame-

work underlying these experiments presents the task of

adaptation as essentially an inference problem: the time-

scale for the change in coding strategy cannot be shorter

than the time required for the system to ‘‘learn’’ the new

distribution.

In order to analyze experiments of this type, one must

describe the coding strategy of the system during changes

in the stimulus distribution. To do so, it is necessary to

reduce the system’s entire input–output mapping to a

simpler characterization. Linear–nonlinear (LN) models

have often been successful in capturing changes in the

computation of an adapting system (Box 2).

Systems adapt to a variety of stimulus
statistics
The simplest instantiation of a stimulus probability distri-

bution is one in which the stimulus takes one of two

possible values. If one of these values is presented more

frequently than the other, a system may adapt to give a

stronger response to the rarer stimulus. This effect was

observed in cat auditory cortex A1 in response to two

tones presented with different probabilities [4,5]. A

potential substrate for this effect was demonstrated in

a cultured network by Eytan et al. [6], who varied the

relative frequency of current injection inputs applied at

different locations. Such stimulus-specific adaptation may

implement a kind of novelty detection, in which the

strength of the response is adjusted according to the

information it carries.

More generally, the efficient coding hypothesis might be

taken to suggest that stimulus encoding is sensitive to the

variations in stimulus statistics seen in natural stimuli.

The properties of natural visual scenes, in particular, have

been extensively studied [7]. A simple model for natural

stimuli is of local Gaussian fluctuations with a long-tailed

mean and variance modulated on longer time or length

scales [8].

Inspired by this description of natural stimuli, a class of

experiments has examined adaptation to a change in the

mean or variance of a Gaussian white noise stimulus.

Using a switching paradigm in which a random stimulus is
Current Opinion in Neurobiology 2007, 17:423–429
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Box 1 Efficient coding

Maximizing efficiency with a fixed dynamic range requires that the system maps its inputs to its outputs such that all outputs are equally likely

(Figure 1, [25,64]). The optimal coding strategy thus depends on the statistics of the stimulus that the system represents.

Figure 1

An example of efficient coding. (a) Given a stimulus distribution (top) and a fixed output range, the maximally efficient mapping from stimulus to

response is the integral of the stimulus distribution (bottom) known as the cumulative distribution. This mapping transforms equal probability in the

stimulus distribution (shaded areas) to equal response ranges, making all responses equally likely. Adapted from [64]. (b) When the stimulus

distribution changes, for example, from p1 to p2 (top), the maximally efficient mapping also changes. The new mapping, r2(s), is the cumulative

distribution of p2(s). In this case, both the mean and the variance of the stimulus distribution change, leading to a shift in the half-maximum and a

decrease in gain (slope) of r2(s) compared with r1(s), respectively.
chosen from a distribution whose parameters change

periodically between two values (Figure 2a), Smirnakis

et al. [9] showed that retinal ganglion cells exhibit an

adaptive change in firing rate when the variance of a

flickering light stimulus changes. In the fly motion sensi-

tive neuron H1, Brenner et al. [10] computed an LN

model for different variances of a randomly varying

velocity stimulus. They showed that the nonlinear gain

function adapted such that the scaling of the stimulus axis

was normalized by the stimulus standard deviation and

that this serves to maximize information transmission

about the stimulus. Further, this gain change occurs

in�100 ms, rapidly maximizing information transmission

during continuous changes in stimulus variance [11]. A

separate slower adaptive process modulates the overall

firing rate on much longer timescales. Analogously, retinal

ganglion cells display contrast gain control [12–16], which

occurs on a much faster timescale than rate changes

attributed to contrast adaptation [9,14].

Adaptation to stimulus variance has also been observed in

several higher brain regions. In rat barrel cortex, when the
Current Opinion in Neurobiology 2007, 17:423–429
variance of a white noise motion of the whiskers was

changed, the relevant features remained approximately

unchanged, but the gain curves showed a change in scaling

by the stimulus standard deviation [17�]. In field L, the

avian analog of primary auditory cortex, Nagel and Doupe

[18�] observed rapid changes in filters and gain curves as

well as a slower modulation of the overall firing rate, similar

to observations in H1 and RGCs, as the distribution of

sound intensity was varied. While individual neurons in

inferior colliculus responding to sound amplitudes showed

a variety of response changes during adaptation, Dean et al.
[19] used Fisher information to demonstrate that the

population as a whole shifted responses to best encode

the high probability sounds, even when the distributions

were relatively complex, such as bimodal. Neural resp-

onses in macaque inferior temporal cortex adapted to the

width of the distribution of image stimuli along arbitrarily

chosen stimulus directions [20].

Beyond white noise

In the LGN, Mante et al. [21] examined the interaction

between adaptation to the mean and the variance (mean
www.sciencedirect.com
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Box 2 Capturing adaptive computation

To effectively characterize adaptation, one must begin with a

characterization of computation. A powerful method for character-

izing neural computation is to approximate the neural system as first

linearly filtering the stimulus by an identified relevant feature or set of

features and then to generate spikes according to a nonlinear

function of the stimulus’ similarity to the feature(s) (Figure 2). Models

of this simple type are known as linear/nonlinear (LN) models and

have had considerable success in capturing some aspects of neural

processing [26].

In this simplified framework, adaptation to stimulus statistics might

affect the features that linearly filter the stimulus, or the nonlinear

function that determines the probability to fire (Figure 2b). A change

in response gain (without a change in the feature) can be manifested

as either a vertical scaling of the linear feature or a horizontal scaling

of the nonlinearity. Changes in the feature for different stimulus

conditions occur, for example, in the retina; in low light levels, the

receptive fields of retinal ganglion cells show increased temporal

integration and decreased inhibitory surround [25].

One can sample these potentially time-dependent components

using reverse correlation either with spikes conditioned on the phase

of their arrival time with respect to the stimulus cycle if the stimulus is

changing periodically, or with an adaptive filter [65].

Figure 2

Neuronal computation modeled using a linear/nonlinear (LN) model.

The linear filter(s) and nonlinear threshold function of the model are

estimated by using reverse correlation between spikes and stimuli.

(a) The spike times of a neuron are recorded in response to some

stimulus. In this example, a filtered Gaussian white noise stimulus is

presented, where the variance of the stimulus changes periodically

between two values, but the white noise is generated anew in each

variance cycle. A raster plot of spike times produced in response to

several different instantiations of the white noise process are shown

below. The stimulus preceding each spike is used to find the

feature(s) and threshold function of the LN model by reverse

correlation. (b) Computation is then modeled by linearly filtering

incoming stimuli with the previously determined feature(s). Filtered

stimuli are then passed through the threshold function, which gives

the probability of firing an action potential as a function of time. To

examine how the LN model changes with the variance context,

spikes are sampled from a particular time bin with respect to the

changes in the variance (shaded box) to compute time-dependent

features and threshold functions.
luminance and contrast) of drifting grating stimuli and

found that the changes in filters due to luminance and

contrast adaptation are independent. Suggestively, their

analysis of natural images also showed independence of

luminance and contrast. The same group found no adap-

tation to higher order statistics — the skewness and kur-

tosis — of a random checkboard stimulus in LGN [22].

However, Hosoya et al. [23�] generalized a previous

finding of rate adaptation to the spatial scale of a flickering

checkerboard [9] to demonstrate adaptation to a variety of

arbitrary spatiotemporal correlations in visual stimuli in

RGCs and showed that the new filters that evolve after

exposure to these correlations act to remove the corre-

lations and so perform predictive coding [24,25].

Determining the effect of complex changes in stimulus

distribution is difficult to address because of the biases

introduced into white noise analysis by non-Gaussian

stimuli [26], which are difficult to separate from observed

dependences of sampled receptive fields on the stimulus

ensemble [27–30]. Sharpee et al. [31] introduced an

information theoretic reverse correlation method that

finds the stimulus dimensions that maximize mutual

information between spiking responses and the stimulus.

This method was used to find significant differences

between the features encoded by V1 neurons in a white

noise ensemble and a natural stimulus ensemble [32�].

Multiple timescales
How might the goal of maintaining efficient information

transmission constrain the dynamics of adaptation? In

tracking changing stimulus statistics, there are two relevant

timescales for any system: the characteristic timescale of

changes in the stimulus distribution and the minimum

time required by an ideal observer to estimate the

parameters of the new distribution. The first timescale is

established by the environment, while the second is deter-

mined by statistics and sets a lower bound on how quickly

any adapting system could estimate parameters of the new

distribution. Given these constraining timescales, an

adapting system should choose an appropriate estimation

timescale for computing local stimulus statistics. For

example, consider a system that adapts to the local stimulus

mean. If this system estimates the local mean by averaging

over only a few samples, the system would amplify noise

and transmit little information about its stimulus [33].

Conversely, a system that averages over a timescale much

longer than the timescale of changes in stimulus mean will

not be optimally adapted to the local stimulus ensemble.

This argument assumes that the neural system can choose

an adaptation timescale to match the dynamics of

stimulus statistics. Experimentally, it appears that two

separable phenomena describe the dynamics of adap-

tation to variance or contrast, at least in early visual

and auditory systems. As discussed above, the first of

these components rapidly rescales the system’s input–
www.sciencedirect.com Current Opinion in Neurobiology 2007, 17:423–429
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output gain following a change in stimulus statistics [11–

16,18�,34]. The second component of adaptation

dynamics is a slow change in the system’s mean firing

rate [9,11,13,15,18�,35�,36]. It is not yet clear what, if any,

relationship exists between these two phenomena. In the

fly H1 neuron, these effects appear to be independent

[11], but such a result does not appear necessary a priori.
At least in some cases, the adaptive rescaling of input–

output functions in rat barrel cortex appears to follow the

slow timescale rate adaptation [17�]. Perhaps consistent

with this, Webber and Stanley found that transient and

steady-state adaptation in this area could be modeled

with a single state variable [37].

The timescale of the fast gain change is often on the order

of the timescale of the system’s relevant feature and does

not appear to depend on the timescale of switches in

stimulus ensemble. In at least some cases, fast gain

changes in response to changes in stimulus variance or

correlation time are a consequence of the system’s static

nonlinearity with no change in system parameters

[38�,39–44]. Whether such effects should rightly be

called adaptation is something of a philosophical ques-

tion. There is no doubt that finite dimensional stimulus/

response characterizations such as LN models are limited

and adaptation may appear to change model parameters.

On the contrary, these models may, in some cases,

capture all stimulus dependence if appropriately

extended.
Figure 3

The apparent timescale of adaptation depends on the dynamics of changes

the variance of a Gaussian white noise stimulus is changed periodically bet

average firing rate of a motion sensitive H1 cell in the fly visual system (botto

As the period of switches in stimulus variance was increased, the time cons

period (red trace) to 40 s period (gray trace). (b) The reported time constant

currents to bipolar cells [60] following an increase (red) or decrease (blue) in

switching period. Where Rieke [60] reports a sum of exponentials, we have p

(c), dashed lines are linear regression fits. (c) The reported time constant of

input currents [35�] of guinea pig RGCs following an increase (red) or decre

increasing switching period. An arrow identifies the exceptional stimulus [35�

flickering field. Where Brown et al. [34] report time to 66% recovery, we plot t

results of (b and c) are expected if the observed systems modify their rate of

law, not exponential, dynamics.
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Slower changes in overall excitability have variable

dynamics and may be subserved by a wide variety of

mechanisms. Spike frequency adaptation (SFA) occurs

over many timescales in cortical neurons [45], and

has been analytically described for simple model neurons

[46,47]. By specifying only the initial and steady-state

firing rate–input ( f–I) curve as well as the effective time

constant, SFA can be described without the knowledge of

particular neuronal dynamics [48,49]. Slow currents have

been implicated in altering the gain of f–I curves, allow-

ing neurons to remain sensitive to input fluctuations at

high mean currents [50–52].

Power law adaptation

In some cases, the dynamics of slow changes in excitability

might be matched to the dynamics of stimulus changes.

Many researchers using a switching paradigm with a single

switching timescale have reported the dynamics of this

slow gain change as an exponential process with a fixed

time scale [5,9,13–15,35�]. However, in the fly visual

neuron H1, when the time between stimulus changes

was varied, the apparent adaptation timescale scaled pro-

portionally (Figure 3a, [11,53]). Thus, the dynamics of slow

gain changes in fly H1 are consistent with a power-law

rather than an exponential process [36,54]. Power-law

dynamics are significant because there is no privileged

timescale: dynamics are invariant with respect to changes

in temporal scale, and such a system could therefore adjust

its effective adaptation timescale to the environment.
in the stimulus ensemble. (a) In this example of a switching experiment,

ween two values (top). Following an increase in stimulus variance, the

m) increased transiently and then relaxed toward a baseline (gray trace).

tant of the slow relaxation in firing rate increased proportionally from 5 s

of slow relaxation in firing rate [9] or input currents [13] of RGCs or input

contrast to a full field flickering stimulus increases with increasing

lotted the time constant of the best fitting single exponential. In this and

slow relaxation in firing rate of rabbit RGCs [9,34] or the firing rate [16] or

ase (blue) in contrast to a full field flickering stimulus increases with

] in which a non-periodic 4 s sinusoid grating was presented instead of a

he time constant of an exponential with equal time to 66% recovery. The

gain change according to stimulus history and are consistent with power

www.sciencedirect.com



Sensory adaptation Wark, Lundstrom and Fairhall 427
Although studies on other systems have not been expli-

citly tested for multiple time scales, results from studies

of temporal contrast adaptation in salamander and mam-

malian (rabbit and guinea pig) retina suggest that the

apparent time constant of the slow gain change indeed

varies as a function of the period between stimulus

switches (Figure 3b and c).

Few studies provide direct evidence for the biophysical

mechanisms underlying multiple timescale dynamics.

Power-law dynamics can be approximated by a cascade

of many exponential processes [36,54,55�]. Thus, a lead-

ing hypothesis is that multiple timescale dynamics are the

result of a cascade of exponential processes in a cell or

network. Multiple timescales exist in the multiplicity of

channel dynamics present in a single neuron [45]. Even in

a single channel, power-law recovery from inactivation

has been shown in isolated NaII and NaIIa channels [56].

This behavior is captured by a stochastic sodium channel

model that includes a Markov chain of multiple inacti-

vation states [55�].

Intrinsic properties or circuit mechanisms?
A leading candidate for a mechanism of contrast gain

control in V1 is the divisive normalization, in which the

output of a given neuron is modulated by feedback from

the responses of neurons with similar receptive fields

[57,58]. However, many of the mechanisms we have

discussed here may operate at the level of the single

neuron [59]. Recent work has made considerable progress

in elucidating where in particular circuits adaptation

occurs. In salamander retinal ganglion cells, rapid contrast

adaptation is partially inherited from the adaptation of

synaptic inputs [13,60] while a second component is

contributed by intrinsic mechanisms [61]. Manookin

and Demb [35�] also find that recovery from high-contrast

stimulation in guinea pig RGCs, characterized by a slow

‘‘afterhyperpolarization,’’ is mediated largely by inher-

ited changes in synaptic inputs with an additional intrin-

sic component. In mouse retina, adaptation to dim mean

background luminance occurs in rod photoreceptors and

at the rod bipolar-to-AII amacrine cell synapse [62]. In

this case, the dominant site of adaptation was predicted

by the likely site of saturation in response due to con-

vergence of signals in the retinal circuitry. In rat barrel

cortex, Katz et al. [63] showed that a subthreshold com-

ponent of adaptation is whisker-specific, while responses

in barrel cortex are multi-whisker, implying that the

adaptation occurs in intracortical or thalamocortical con-

nections as opposed to via intrinsic mechanisms in the

barrel cortical neurons.

Conclusion
A growing body of evidence suggests that representations

at all levels throughout sensory processing pathways are

plastic, depending on the recent history of the stimulus,

on a range of timescales varying from virtually instan-
www.sciencedirect.com
taneous to timescales more typically associated with

synaptic changes. This plasticity can increase the infor-

mation transmission rate of the signal. One would thus

like to determine whether constraints on timescales are

imposed by the time required to learn dynamic efficient

representations. It is becoming clear that some com-

ponents of what we think of as advanced processing

may be occurring at low levels. Furthermore, some types

of sophisticated apparent learning effects may be a result

of intrinsic nonlinearities. A view of sensory systems as a

simple feed-forward relay of filtered sensory information

from transducers to cortex is no longer appropriate.

Instead, we must consider the statistics of the natural

world, plasticity at multiple levels of sensory processing,

and the consequences for encoding of sensory infor-

mation at each stage.
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