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Cell-to-cell variability in molecular, genetic, and physiological fea-
tures is increasingly recognized as a critical feature of complex
biological systems, including the brain. Although such variability has
potential advantages in robustness and reliability, how and why
biological circuits assemble heterogeneous cells into functional
groups is poorly understood. Here, we develop analytic approaches
toward answering how neuron-level variation in intrinsic biophysi-
cal properties of olfactory bulb mitral cells influences population
coding of fluctuating stimuli. We capture the intrinsic diversity of
recorded populations of neurons through a statistical approach
based on generalized linear models. These models are flexible
enough to predict the diverse responses of individual neurons yet
provide a common reference frame for comparingoneneuron to the
next. We then use Bayesian stimulus decoding to ask how effec-
tively different populations of mitral cells, varying in their diversity,
encode a common stimulus. We show that a key advantage pro-
vided by physiological levels of intrinsic diversity is more efficient
and more robust encoding of stimuli by the population as a whole.
However, we find that the populations that best encode stimulus
features are not simply the most heterogeneous, but those that
balance diversity with the benefits of neural similarity.

generalized linear models | intrinsic biophysics | neural variability |
stimulus coding | ion channels

Biological systems including brains must function efficiently
under many constraints, including constraints on the numbers

of individual neurons dedicated to a given task. Brain function
therefore depends on an appropriate division of labor, with spe-
cific neurons dedicated to different functions. For example, dif-
ferent types of retinal ganglion cells represent visual information
at different timescales (1), and distinct classes of cortical inter-
neurons play diverse roles in coordinating network activity (2).
Whereas attempts to understand how distinct classes of cells
encode information have proven successful (1), the importance of
within-type variability remains poorly understood (3, 4) although
has recently become a topic of great interest (5–8).
Although neuron-to-neuron variability is often viewed as an

epiphenomenon of biological imprecision (3, 4), having neurons
of the same type that respond to different stimulus features may
improve stimulus encoding. This variability may be leveraged to
improve functions such as stimulus encoding if heterogeneous
output of neurons of a single type is collectively used for pop-
ulation coding. Such populations of neurons could efficiently
represent complex stimuli by collectively covering the relevant
stimulus space (1, 9, 10). Network interactions could further
increase the efficiency of information transmission by decorre-
lating neural responses and reducing the redundancy between
their outputs (11–13). In contrast, eliminating redundancy (also
referred to as biological degeneracy, ref. 14) may make stimulus
coding less robust to noise or damage (15), thus we hypothesized
that an optimal coding strategy would require balancing diversity
with feature similarity or overlap.
Although theorists have previously explored this issue (12, 16,

17), analysis of the function of the diversity of real populations of
neurons requires overcoming methodological hurdles associated

with studying cell-to-cell variability (3, 4). Cell-level differences
(that are typically averaged away) must be captured and quan-
tified. Once these differences have been quantified, one must
compare the functional output of populations differing in their
variability. In the context of neural coding these issues translate
to answering the questions: What properties of neurons de-
termine their response to stimuli? How are these properties
distributed? And how do these distributions of properties in-
fluence the encoding of stimuli by populations? Although pre-
vious experimental approaches have identified neuron diversity
using standard receptive field analyses, these typically do not
describe the full complexity of neural responses to stimuli (18–
20), nor do they allow the source of the response heterogeneity
to be identified as either synaptic or intrinsic. In addition, sim-
plistic readouts of population spiking output may underestimate
the richness of the underlying neural code (1, 10, 21). Our ap-
proach allows the influence of intrinsic diversity to be isolated
from synaptic differences and captures the full potential of these
diverse populations for stimulus encoding.
Specifically, we developed measures of neuronal population

diversity based on statistical generalized linear models (18, 22)
that accurately reproduce the responses of recorded individual
olfactory bulb mitral cells (MCs). These cells have been shown to
express significant biophysical variability from neuron to neuron
(5–7). We then used the framework of model-based stimulus
decoding (18, 23) to compare how populations varying in their
diversity optimally encode varieties of stimuli. This approach
enables us to determine whether specific advantages arise from
the intrinsic diversity of these neurons, and how MC populations
balance the competing benefits of diversity and feature similarity.

Results
Statistical Neuron Models Capture Mitral Cell Response Diversity.We
generated models of individual MCs from data collected during in
vitro whole-cell recordings in which somatic current injection of
broad-band-filtered noise (5) evoked action potential trains (Fig. 1
A and B; n = 44 neurons). Synaptic transmission was blocked
pharmacologically, so that differences in the cells’ spiking respon-
ses reflected only differences in their intrinsic firing properties (e.g.,
due to biophysical conductances and/or morphology). Each neu-
ron’s spiking response to input current was fit by a generalized
linear model (GLM). GLMs extend stimulus-based reverse corre-
lation or linear–nonlinear–Poisson (LNP) models (20, 24) by in-
cluding terms that describe how a neuron’s spike probability is
modulated via its previous spikes (18, 22). Here each GLM had
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a constant (bias) term to match baseline firing, a linear stimulus
filter determining the neuron’s stimulus preference, and a spike
history function capturing the neuron’s refractory and bursting
properties (Fig. 1C).
This approach captures the spiking responses of neurons with-

out explicitly modeling the many ion channels expressed by in-
dividual cells (3, 5, 6) (Fig. 1 A and B). Furthermore, GLMs
modeled MC activity better than a simpler model that did not
include spike history effects (LNP; Fig. 1D and Fig. S1), indicating
that postspike refractory and bursting effects substantially con-
tribute to action potential generation in these neurons. Because
the parameters of the GLM model emergent physiological

features of the recorded neurons, comparing GLM parameters
across neurons illustrates the diversity among MCs (Fig. 1 E–G).
For example, the diversity reflected in postspike (i.e., spike his-
tory) filters potentially corresponds to a recently characterized
variability in the rebound depolarization current of these neurons
recorded in vivo (6). Furthermore, the interaction of each MC’s
GLM parameters defines how it responds to stimuli and dictates
the complex stimulus features that each neuron best encodes. We
note that the efficacy of the GLM approach in capturing MC
responses was not specific to the precise stimulus statistics de-
livered to the neurons here (Fig. S2).

Diversity Enables Efficient Stimulus Representation. Because the
GLM approach captures the intrinsic diversity across MCs, dif-
ferent model MCs generate unique spike trains when presented
the same dynamic stimulus (Fig. 2B and Fig. S3). We used this
model-based approach to ask which features of these individual
neurons influence the amount of information about the stimulus
that each neuron captures (Fig. 2A). Quantifying the quality of
stimulus representation using information theoretic methods (23,
24), we found that neuron information rates were strongly cor-
related with firing rate (r = 0.87; Fig. 2C), in line with previous
findings (25). However, we note that we found examples of
neurons that had identical firing rates and yet differed almost
twofold in their information rates, suggesting the importance of
additional factors other than firing rate governing the amount of
transmitted information. For example, neurons with spike times
that were reliable across stimulus repeats and spikes that were
strongly stimulus driven (i.e., minimal contributions from bias
or spike-history terms) were more informative per spike (Fig. 2D
and Fig. S3C). We note that the large range and diversity of
firing rates observed among the MCs here is concordant with
those found in vivo (26).
We extended this information-based framework to examine

how populations of recorded MCs encode a common stimulus,
considering two broad possibilities. First, stimuli might be best
encoded by groups of highly similar neurons, suggesting that
averaging across the population of recorded neurons can com-
pensate for unreliable spiking in any single neuron (10). Alter-
natively, stimuli might be best encoded by groups of heterogeneous
neurons, suggesting that maximizing the representation of tem-
poral features of the stimuli is important (12, 27). We specifically
chose to study how diverse groups collectively represent an iden-
tical stimulus to mimic features of the olfactory bulb, where 25–50
sister MCs projecting to the same glomerulus (5) each receive
highly correlated stimulus- and respiration-driven synaptic input
(26, 28–30).
We created populations of uncoupled virtual mitral cells by

randomly selecting groups of model neurons (i.e., fit from the
recorded MCs). Spiking responses in these virtual populations
were then simulated using the GLMmodels, enabling us to probe
ensemble responses to many more stimuli than could be delivered
during experimental recordings. The neurons in these synthetic
populations varied in the diversity of their GLM parameters,
allowing us to determine how neuronal diversity influences the
encoding of fluctuating stimuli. To this end, we used Bayesian
model–based decoding, which optimally reconstructs the input to
a population (i.e., its “perceived stimulus”) given its ensemble
response (18, 23). This approach solves the high-dimensional
problem of interpreting dynamic population responses (13, 23)
without making undue simplifications or assumptions about the
nature of the neural code (5, 10, 21). However, we note that we
could have instead focused on alternative metrics of population
output instead of stimulus representation efficacy.
We first used the analysis described above on populations

consisting of pairs of simulated neurons. Homogeneous pairs,
composed of two copies of the same model neuron (with iden-
tical stimulus filtering properties), encoded 73 ± 11% more
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Fig. 1. Simple models capture mitral cell stimulus-evoked responses and
intrinsic diversity. (A) MC intrinsic properties are probed using filtered
broadband stimuli (first row) injected somatically to evoke changes in
membrane voltage (second row). Spike rasters (third row; black) and peri-
stimulus time histograms (PSTH) (fourth row; black) for repeated stimulus
presentations (n = 40 trials) show that this MC spikes to the stimulus with
temporal jitter and displays a coarse stimulus preference. Model neuron
rasters (Third Row, red) and PSTH (fourth row, red) show that the model
accurately predicts MC activity on novel stimuli. (B) Same as A but for a dif-
ferent neuron. (C) Structure of the GLM neuron model. Model parameters
describe a temporal stimulus filter, a postspike filter, and a constant bias
term. An exponential nonlinearity defines an instantaneous spike rate and is
used to draw noisy spikes. (D) GLM models accurately predict 86 ± 11%
(mean ± SEM) of stimulus-evoked activity across all MCs, computed as the
correlation coefficient between MC and model PSTH. For all neurons, the
GLM fits were better than LNP models. (E–G) Model parameters for all MCs.
Each line corresponds to parameters for a unique neuron and is colored by
mean firing rate. (E) Temporal stimulus filters model differential stimulus
specificity of neurons. (F) Exponentiated postspike filters, plotted as a mul-
tiplicative gain in spike probability following a spike at t = 0 ms. Values less
(greater) than 1 indicate a decreased (increased) spike probability. (G) Bias
terms also show considerable variation. Same y axis as F.
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informative about the stimulus than a single neuron copy alone
(Fig. S4). In other words, because spiking is a stochastic process,
decoding is improved by considering multiple spike trains from
identical model neurons. This allows for “averaging out” the
effect of any single neuron’s noise. Next, we considered both
homogeneous and heterogeneous pairs of neurons, and quanti-
fied the informational redundancy of these pairs. This method
compares the information of the pair relative to the sum of each
neuron’s information independently (13), and gives an indication
of the efficiency of information representation by the population.
For example, do neurons together represent information re-
dundantly (i.e., both neurons communicate identical or partially
overlapping messages)? Or do they instead represent information
synergistically (i.e., both neurons communicate more information
together than both individually)? Although we found that most
homogeneous and heterogeneous populations represented in-
formation redundantly (Fig. 2 E and F), homogeneous pairs were
twice as redundant as heterogeneous pairs (16% versus 8% in-
formational redundancy; Fig. 2G). Given that these neurons do
not directly communicate, we note that the appearance of syn-
ergism among neurons pairs here is somewhat surprising and is
likely due to limitations in our ability to estimate information
rates among low firing rate neurons (see Materials and Methods
for further explanation). Nonetheless, these results demonstrate
that although pooling responses over multiple neurons even
multiple copies of the same neuron is beneficial, the heteroge-
neity in intrinsic properties in actual mitral cells is beneficial for
efficiently representing sensory information.

Intrinsic Diversity Enables Populations to Generalize Across Stimulus
Types. We next investigated the effect of diversity on stimulus
coding in larger neuronal populations. In Fig. 3A we plot actual
and reconstructed stimuli for two example populations: the first,
a homogeneous group composed of five copies of the highest firing
rate, most informative neuron from Fig. 2C; the second, a pop-
ulation composed of neurons with diverse parameters (Fig. 3D).

Both populations encode stimuli composed of high frequencies
with high fidelity (Fig. 3A); however, the diverse population is
more effective in representing lower-frequency stimuli (Fig. 3E)
than the homogeneous one (Fig. 3 B and C). Thus, although the
diverse population has 45% fewer spikes than the homogeneous
one, the diverse population better uses its allocation of five neu-
rons by representing more of the relevant stimulus space with its
(temporal) receptive fields.
To extend this analysis we compared how 250 populations of

randomly chosen five-neuron ensembles encoded stimuli with
different frequency spectra (e.g., 1/f α noise with differing values
of α, white noise, etc.; n = 8 stimuli total; shown in Fig. S5).
These stimuli were chosen to cover a wide range of input fre-
quencies including the range of frequencies these neurons likely
receive in vivo (29, 31). We created homogeneous populations,
each consisting of five copies of a single MC, and heterogeneous
populations generated by randomly selecting five MCs from the
recorded set with replacement. To compare population respon-
ses across stimulus spectra, we ranked the populations in order
of increasing average reconstruction error for each kind of
stimulus and compared ranks across different stimuli. Across
pairs of stimulus types population ranks were correlated (Fig. 3 F
and G; r = 0.80 and 0.71, respectively), meaning that those
populations that represent one stimulus well also represent other
kinds of stimuli well (termed generalizability). Heterogeneous
populations were better than homogeneous ones not just at
encoding stimuli on average (Fig. 3H), but also at generalizing
across different stimuli (specific examples in Fig. 3 F and G and
summary in I). Thus, the observed intrinsic diversity helps en-
code many kinds of stimuli, conferring representational robust-
ness to MC populations.

Populations Optimized for Specific Stimuli Combine Diversity with
Homogeneity. Thus far, we have only considered sampling neu-
rons randomly according to a particular rule (homogeneously
versus heterogeneously). We next attempted to construct more

0. generate stimuli

with specified statistics

0 50 100
0

0.005

0.01

P
o

w
e

r 
sp

e
ct

ru
m

Frequency (Hz)

stimulus reconstructed stimulus

population response

1. simulate responses

from models

2. decode stimulus

using models

3. compare estimated

 to actual stimulus

A

−1

0

1

2

S
ti

m
u

lu
s 

(a
.u

.)
0 50 100 150 200 250

Time (ms)

18

35

B

Cell number

C
e

ll 
n

u
m

b
e

r

10 20 30 40

10

20

30

40

In
fo

 (b
its/se

c)50

100

150

Cell number

C
e

ll 
n

u
m

b
e

r

10 20 30 40

10

20

30

40

R
e

d
u

n
d

a
n

cy

0.2

0.1

0

-0.1

E F G

0 20 40 60
0

20

40

60

80

100

Firing rate (Hz)

In
fo

 r
a

te
 (

b
it

s/
se

c)

0 0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

3

Neuron reliability

In
fo

 r
a

te
 (

b
it

s/
sp

ik
e

)

C D

N
e

u
ro

n
 ID

0

0.05

0.1

0.15

0.2

R
e

d
u

n
d

a
n

cy

Hom- Het-

Firing rate

Fig. 2. Using simulated ensemble responses to
study stimulus representation in diverse neural
populations. (A) Schematic of the paradigm used
to study how neural populations represent stim-
uli. Following the generation of noisy stimuli,
population spike responses were simulated using
the MC models. Bayesian decoding was used to
estimate the most probable stimulus given the
population response and then compared with the
actual stimulus. (B–D) Stimulus encoding by single
neurons. Stimulus statistics and coloring of neu-
rons same as in Fig. 1. (B) Stimulus (Top; black),
spike trains (Bottom), and reconstructions (Top;
cyan, orange) for two example neurons. These
neurons encode the same stimulus differently, as
evidenced by their unique spike trains and stim-
ulus reconstructions. (C) Quantifying stimulus
representation using mutual information (mean ±
SEM, n = 44 cells) shows that a neuron’s in-
formation rate is strongly correlated with its fir-
ing rate (r = 0.87). Boxes indicate neurons shown
in B. (D) As in C, but plotted as average in-
formation conveyed by single spikes as a function
of neuron reliability. (E–G) Stimulus encoding by
neuron pairs. (E) Mutual information for all neu-
ron pairs with neurons ordered along axes by in-
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pairs. (F) As in E but plotted as the normalized
informational redundancy of the neuron pair.
Positive (negative) values indicate population redundancy (synergy) where zero indicates independent stimulus encoding. 90% of pairs were redundant, yet
overall redundancy values were small, indicating near-independent encoding. (G) Homogeneous pairs (Hom) are significantly more redundant than het-
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optimal groups of neurons for encoding specific stimulus types.
We liken this scenario to that of sisterMCs associated with a single
glomerulus, which receive inputs with a specific temporal struc-
ture (26, 32) based on olfactory receptor neuron (ORN) odorant
binding kinetics, which differ across glomeruli and ORN subtypes
(33, 34). Would the best population for a given stimulus be more
diverse than selecting MCs at random from the physiologically
based set? Or would the best population be more homogeneous
than random, perhaps allowing the responses of unreliable neu-
rons to be improved upon by selecting neurons coding for re-
dundant (i.e., degenerate) stimulus features? To answer these
questions, we implemented a greedy search algorithm (35) to
build the best population of model MCs to encode a given stim-
ulus by iteratively adding neurons one at a time such that the
added neuron maximized the ability of the entire population to
represent the stimulus (Fig. 4A). Although it is not guaranteed to
find the global optimum, it is an efficient and intuitive method of

finding neuron groups more informative than those generated
through random sampling.
Visualizing the makeup of these greedy-search-selected pop-

ulations using dimensionality reduction (Fig. S6) reveals that they
reflect a balance between diversity—consisting of neurons with
different properties, and homogeneity, often including multiple
copies of selected neurons (Fig. 4 B and C and Fig. S7). In ad-
dition, the stimulus type dictates the selection of specific neurons
and the chosen level of population diversity. For example, the
population selected to best encode a white-noise stimulus (Fig.
4C) was composed primarily of similar neurons with high firing
rates; whereas, diversity in neuron properties was more important
for encoding a more naturalistic stimulus with both rapidly and
slowly varying temporal components (Fig. 4B). Using the greedy
search algorithm to select populations for each of the eight
stimulus types, we quantified the diversity of these populations
and of randomly sampled heterogeneous and homogeneous
populations (Fig. 4D). Surprisingly, greedy search populations
were on average ∼25% less diverse than heterogeneous ones
when considering either stimulus filter and postspike parameters.
Furthermore, quantifying population diversity for MC groups se-
lected to best encode different stimulus types reveals that they have
varying levels of diversity (Fig. 4E and Fig. S8), suggesting that
population diversity should be preferentially tuned to the afferent
stimulus distribution.
To ensure that the previous findings are not solely the result of

the greedy selection process, we performed additional simulations
by randomly constructing populations with differing amounts
of diversity and examining the relationship between population
diversity and decoding accuracy. As predicted from the greedy
search results, we found evidence for a U-shaped relationship
between decoding accuracy and population diversity (Fig. 4F and
Fig. S9), indicating that neural coding is optimized at intermediate
levels of diversity. However, population size is also a relevant
factor in the importance of population diversity, with diversity
being more important to smaller populations than larger ones
(Fig. S10). This suggests that heterogeneity will be more important
to populations in which the number of neurons devoted to rep-
resenting a stimulus is relatively small. Furthermore, we found the
benefit of neural variability to not be solely dependent upon
a single GLM filter dimension (Fig. S11), such as the stimulus filter
or bias term.

Discussion
Here we apply the framework of generalized linear models to
study how cell-to-cell differences in intrinsic properties of olfac-
tory bulb mitral cells influence stimulus encoding. The statistical
modeling approach that we have used accurately captures the
neuronal properties determining spiking and avoids overfitting.
It also avoids making specific but difficult-to-verify claims about
channel densities or properties that can arise from undercon-
strained Hodgkin–Huxley models (36). We show that diverse
populations offer the advantages of more efficient encoding (de-
fined in terms of information per cell or information per spike)
and more robust coding of different kinds of stimuli, such as
stimuli with wide ranges of spectral properties. This is because
neurons encoding partially overlapping (i.e., degenerate) stimulus
features can work together to overcome neural spike-generation
noise and also encode more stimulus features together than sep-
arate. We also show that populations selected to best represent
stimuli with specific spectral properties have differing amounts of
diversity, which suggests that population diversity should be se-
lectively chosen with respect to the precise stimulus to be encoded.
Although variants of this framework have been used to model
neural responses previously [including in single neuron modeling
competitions (37, 38)] we extend these methods to describe the
systematic biological differences among neurons and their impact
on population coding. Given the generality of this framework, we

−2

0

2

S
ti

m
 (

a
.u

.)

100 200 300 400 500

Time (ms)

−1
0
1
2
3

S
ti

m
 (

a
.u

.)

0 100 200 300 400 500

Time (ms)

−1

0

1

2

S
ti

m
 (

a
.u

.)

0 100 200 300 400 500

Time (ms)

−50 −25 0

0

0.5

1

0 50

0.1
1

10
100

−50 −25 0

0

0.5

1

0 50

0.1
1

10
100pop

 1
pop

 2
0 50 100

0

0.2

0.4

Freq (Hz)

P
o

w
e

r

1100200

1

100

200

Pop rank: stim 1
1100200

1

100

200

P
o

p
 r

a
n

k:
 s

ti
m

 2

Pop rank: stim 1

P
o

p
 r

a
n

k:
 s

ti
m

 3

Post−spikeStimulus filter Bias

S
ti

m
 u

n
it

s 
(a

.u
.)

Time (ms)

G
a

in

A

B

E

F G

C

D

H I

0 0.5 1
0

0.5

1

Hom generalizability

H
e

t 
g

e
n

e
ra

liz
a

b
ili

ty

Hom Het

20

40

60

80

M
e

a
n

 p
o

p
 r

a
n

k

(p
e

rc
e

n
ti

le
)

FR

Stimulus 1

Stimulus 2

Stimulus 3

100

pop

 1
pop

 2

pop

 1
pop

 2

0
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rasters (Bottom), and reconstructions (Top) for a homogeneous population
composed of five copies of the most informative neuron (pop 1, red) and
a heterogeneous population composed of five neurons with diverse prop-
erties (pop 2, green) for three stimuli with different power spectra: stimulus
1, Gaussian white noise (GWN) convolved with an alpha function with τ = 3
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Ornstein–Uhlenbeck process with τ = 40 ms (C). Note that although both
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ones (P = 0.002, paired Wilcoxon). (I) Plot of generalizability, defined as the
correlation of population ranks on stimulus pairs, for hom and het pop-
ulations across all pairs of eight stimulus types. Each dot corresponds to the
generalizability between a pair of stimulus types (n = 28 total pairs). Het
populations are significantly more likely than hom to generalize to novel
kinds of stimuli (P = 1.5*10−4, paired Wilcoxon).
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believe that this methodology can similarly be extended to de-
scribe electrophysiological differences across neuron types and to
develop hypotheses about the distinct roles of different neuron
types throughout the brain.
One of the key advantages of this approach is that it allows us

to use Bayesian stimulus decoding to ask how neuron-to-neuron
differences in stimulus filtering and postspike properties in-
fluence population coding of arbitrary stimuli. Bayesian decod-
ing is advantageous because it offers an optimal, best-case view
of neural encoding, making few assumptions that risk under-
estimating the complexity of the neural code (18, 23). Although
we explored the relationship between stimulus encoding in di-
verse and homogeneous populations in a previous study (5),
performing stimulus reconstruction here allows the identification
of the relative importance of variation in specific features of the
sets of recorded neurons. This approach also allows us to in-
vestigate stimulus encoding in a more general context by simu-
lating responses to arbitrary stimuli. An obvious advantage of
simulation approaches is that we are not limited to only ana-
lyzing data that we are able to collect during recordings.
Our results make specific, testable predictions on the role ofMC

intrinsic diversity for encoding olfactory information. First, we
show that when populations need to represent a variety of stimulus
types, then intrinsic diversity facilitates generalizing representa-
tions across stimulus types. Second, when populations need to
represent a single kind of stimulus and are allowed to selectively
choose their level of variability, populations choose a balance
between complete homogeneity and diversity. That is, homoge-
nizing the input received by a population of neurons should lead
the population to be less diverse. This in silico finding is intriguing
because it is consistent with recent experimental findings showing

that sister MCs, receiving primary olfactory inputs from the same
glomerulus and olfactory receptor subtype, are biophysically more
similar to one another than sampling MCs at random (7). Fur-
thermore, our work makes the additional hypothesis that the level
of diversity across sister MCs should be adaptive with respect to
the unique stimulus distribution that these neurons receive from
their olfactory receptor subtype (32–34). Therefore, we predict
that the levels of MC intrinsic diversity between sister MCs should
be empirically different across glomeruli (Fig. 4G).
We note that we made multiple assumptions here for the sake

of computational tractability. Because our focus was to study the
functional role of MC intrinsic diversity, we chose not to include
any of the effects of neural connections such as synapses between
neurons in our experiments and simulations. Given that the
olfactory bulb possesses extensive lateral circuitry (11), which has
been shown to also diversify MC responses (11, 39, 40), we ex-
pect that bulbar circuit activity will work in conjunction with
intrinsic diversity in vivo to further diversify MC responses (41).
Furthermore, when decoding we took the perspective that the
best populations were those that resulted in the most faithful
reconstruction of the stimulus. However, the biological solution
dictating the actual amount of diversity may use alternative cri-
teria for optimality. For example, in vivo olfactory bulb MCs may
seek to represent only odor-specific stimulus components or may
try to maximize stimulus representation while also minimizing
the number of spikes used to transmit the information (42). We
chose to avoid assumptions about which features of ORN input
are most important for MCs to represent and rather to take the
agnostic view that MCs should try to represent the stimulus in its
entirety. Our approach, however, can readily be adapted to tasks
that require representation of specific stimulus components.
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the neuron chosen maximized the population’s reconstruction accuracy. To allow for homogeneity, neurons could be added more than once (e.g., two red
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ulation diversity should be preferentially selected with respect to the specific incoming stimulus distribution.
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Although these assumptions likely affect the quantitative details
of our results, like specifying of the precise balance between
diversity and feature similarity, our general finding that a precise
stimulus-specific balance exists nevertheless likely holds.
We believe that our results generalize to other neural systems

because this circuit motif in which multiple neurons receive highly
correlated inputs occurs throughout the brain, including neocortex
(43, 44). Thus, we predict that the observed degree of neuronal
intrinsic variability plays a substantial role in tuning the output
diversity (or redundancy) in these neurons’ spiking responses and
in improving stimulus encoding. Furthermore, our findings may in
part explain the substantial informational redundancy found in
neural populations throughout the brain (1, 10). Given that the
optimal networks here are neither maximally diverse nor maxi-
mally homogeneous, these results suggest similar design principles
for other systems. By mixing diversity with neural feature simi-
larity, complex systems can simultaneously maintain efficient
functioning while remaining robust to uncertain events.

Materials and Methods
A detailed description of the methods is provided in the Supporting In-
formation. In brief, whole-cell patch clamp recordings of mitral cells were

obtained in vitro from mouse olfactory bulb slices (5). Spikes were recorded
while stimulating neurons with 40 trials of a 2.5-s duration frozen noise
stimulus, generated by convolving a white-noise current with an alpha
function with τ = 3 ms. Point process models were fit from recordings via
previously described methods (18). The models fit from physiological data
were used to simulate neuron spike responses to stimuli not presenting
during recording. Uncoupled populations were constructed by sampling
neurons from the set of model neurons, where all neurons in a population
received an identical stimulus. Population responses were decoded using the
maximum a posteriori estimator (23) (posterior mode) to reconstruct the
time series of stimulus input to the population. Population decoding per-
formance was quantified using mutual information and root mean square
error. To approximate the structure of the optimal population for best
representing a particular kind stimulus, we implemented a greedy search
algorithm (35). Unless otherwise indicated, all error bars indicate SEs and all
statistical tests were Wilcoxon rank–sum tests.
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