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The ability of an animal to detect weak sensory signals is limited,
in part, by statistical fluctuations in the spike activity of sensory
afferent nerve fibers. In weakly electric fish, probability coding
(P-type) electrosensory afferents encode amplitude modulations
of the fish’s self-generated electric field and provide information
necessary for electrolocation. This study characterizes the sta-
tistical properties of baseline spike activity in P-type afferents of
the brown ghost knifefish, Apteronotus leptorhynchus. Short-
term variability, as measured by the interspike interval (ISI) dis-
tribution, is moderately high with a mean ISI coefficient of varia-
tion of 44%. Analysis of spike train variability on longer time
scales, however, reveals a remarkable degree of regularity. The
regularizing effect is maximal for time scales on the order of a few
hundred milliseconds, which matches functionally relevant time
scales for natural behaviors such as prey detection. Using high-

order interval analysis, count analysis, and Markov-order analy-
sis we demonstrate that the observed regularization is associ-
ated with memory effects in the ISI sequence which arise from an
underlying nonrenewal process. In most cases, a Markov pro-
cess of at least fourth-order was required to adequately describe
the dependencies. Using an ideal observer paradigm, we illus-
trate how regularization of the spike train can significantly im-
prove detection performance for weak signals. This study em-
phasizes the importance of characterizing spike train variability
on multiple time scales, particularly when considering limits on
the detectability of weak sensory signals.
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Survival in an animal’s natural environment is dependent on the
ability to detect behaviorally relevant stimuli, such as those caused
by predators and prey. Being able to reliably and efficiently detect
such signals at weak levels confers a competitive advantage. Thus
many sensory systems, including the electrosensory system dis-
cussed here, have presumably experienced selective pressures over
the course of evolution to improve detection performance for weak
sensory signals.

The decision of whether or not a stimulus is present must
ultimately be based on a change in the spike activity of primary
afferent nerve fibers. In many cases, this change must be detected
in the presence of ongoing spontaneous activity. Intuitively, a
subtle change in spike activity caused by a weak external signal
should be easier to detect when the baseline activity is regular and
predictable than when it is irregular and subject to random fluctu-
ations. To understand the limits on signal detection performance, it
is thus important to characterize the variability of baseline activity
in primary afferent spike trains.

A common approach for characterizing spike train variability is
by analysis of the first-order interspike interval (ISI) distribution
(Hagiwara, 1954; Moore et al., 1966; Ratliff et al., 1968; Gabbiani
and Koch, 1998). The coefficient of variation (the SD divided by
the mean) of the ISI distribution provides a convenient measure of
the variability in the arrival time between successive spikes. It is
important to realize, however, that the first-order ISI distribution
only provides information about short-term variability on time
scales comparable to the mean ISI. Long-term variability, over time
periods containing multiple spikes, must be measured using other
techniques, such as analysis of higher-order interval distributions
(Rodieck et al., 1962; Moore et al., 1966) or spike count distribu-
tions (Barlow and Levick, 1969a,b; Teich and Khanna, 1985).

Measurements of long-term variability for primary afferent spike
trains are not commonly encountered in the literature. These
measures would indeed be redundant if afferent spike activity could
be adequately modeled as a renewal process. For a renewal process,
successive intervals in the ISI sequence are independent and iden-
tically distributed (Cox, 1962) and therefore, higher-order interval
and count distributions can be derived knowing only the first-order
ISI distribution. Thus, variability on all time scales can be com-
puted. However, when spike activity arises from a nonrenewal
process there will be correlations and history-dependent effects in
the ISI sequence. In such cases, the first-order ISI distribution does
not provide sufficient information to predict long-term spike train
variability or to set limits on signal detection performance.

In this paper, we analyze the variability of baseline spike activity
recorded from P-type (probability coding) electrosensory afferent
fibers in the weakly electric fish Apteronotus leptorhynchus (brown
ghost knife fish). Objects near the fish that differ in impedance from
the surrounding water modulate the self-generated electric field
because of the fish’s electric organ discharge (EOD). These mod-
ulations provide sensory cues that allow the fish to hunt and
navigate in the dark using electrolocation (Rasnow, 1996) (for
review, see Bullock and Heiligenberg, 1986). P-type afferents re-
spond to the strength of amplitude modulations (AMs) by increas-
ing or decreasing their probability of firing (Scheich et al., 1973;
Bastian, 1981; for review, see Zakon, 1986). Their AM response
characteristics have been well studied (Hagiwara et al., 1965;
Scheich et al., 1973; Hopkins, 1976; Bastian, 1981; Shumway, 1989;
Wessel et al., 1996; Xu et al., 1996; Nelson et al., 1997), but
variability of baseline spike activity has not been fully
characterized.

Infrared video recordings of prey capture behavior in Apterono-
tus performed in our laboratory have been used to estimate the
behavioral threshold for detecting small prey (Daphnia magna, 2–3
mm in length) in the dark. At the time of detection, we estimate
that the prey gives rise to an AM signal that transiently changes the
firing probability of P-type afferents by only ;1% (Nelson and
MacIver, 1999). In this study we show that P-type afferent spike
trains are irregular as judged by the first-order ISI distribution but
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that there is an underlying nonrenewal process that serves to make
the spike train more regular over longer time intervals. In an ideal
observer framework (Green and Swets, 1966) this regularity effec-
tively reduces the detection threshold for weak stimuli, such as
those caused by small prey.

MATERIALS AND METHODS
Electrophysiology
Extracellular recordings were made from isolated P-type afferent fibers of
weakly electric fish Apteronotus leptorhynchus. Surgical and nerve record-
ing procedures used here are identical to those described in an earlier study
(Xu et al., 1996). Briefly, fish were anesthetized in 100 ppm tricaine
methanesulfonate (MS-222; Sigma, St. Louis, MO) and immobilized with
an intramuscular injection of 3 ml 10% gallamine triethiodide (Flaxedil;
Sigma). P-type afferent fiber activity was recorded from the posterior
branch of the left anterior lateral line nerve (pALLN), which innervates
trunk electroreceptors. Recordings were made in the presence of the EOD
of the fish with no other stimulus present. We refer to activity under these
conditions as “baseline” activity, in contrast to spontaneous activity that
would be obtained if the EOD were silenced. Action potentials were
recorded from individual pALLN fibers with glass microelectrodes (im-
pedance of 10–30 MV) filled with 3 M KCl solution. Neural activity and
EOD waveforms were digitized at 17 kHz and stored for offline analysis.
Spike events in the nerve recording were identified by a threshold criteria
and time-stamped with a resolution of 60 msec. All data analysis was
performed on Sun workstations using custom software and the MATLAB
programming environment (The MathWorks).

Spike train representation
Apteronotus leptorhynchus has a continuous quasi-sinusoidal EOD wave-
form with a fundamental frequency f that ranges from 750 to 1000 Hz
depending on the individual. P-type units fire at most once per EOD cycle
and randomly skip cycles between successive spikes. On average, a typical
unit fires on about one-third of the EOD cycles. This ratio is referred to as
the per-cycle probability of firing p. In the presence of a stimulus, the
per-cycle probability is modulated by stimulus intensity, and hence P units
are called probability coders.

When spike times are sampled at intervals smaller than the EOD period,
the timing of spikes within the cycle can be observed. This is illustrated in
the ISI histogram shown in Figure 1 A. The peaks of the ISI distribution
are separated by one EOD period. The width of each peak reflects the
variability in firing phase within the EOD cycle. In subsequent analyses in
this paper, we only keep information about the occurrence of a spike in an
EOD cycle and discard information about the phase within the cycle. That
is, we resample the spike train at the EOD frequency f. The effect of this
resampling is seen in Figure 1C, which is the discrete time ISI histogram
for the fiber shown in Figure 1 A. Time is measured in EOD cycles and
hence, ISIs assume only integer values j $ 1, where j is the number of cycles
to the next spike. For the remainder of this work, we only consider
discrete-time spike trains sampled at the EOD rate.

The resampled spike train is a realization of a discrete time stochastic
process x(i) where i $ 1 is the EOD cycle number. Furthermore, x(i) 5 1
if there is a spike in cycle i and is zero otherwise. The mean per-cycle firing
probability is given by p 5 n/T where n 5 (i51

T x(i) is the total number of
spikes observed in a record of duration T EOD cycles. The stochastic
process x(i) can be characterized in terms of the statistical properties of the
time intervals between spikes (interval analysis) or by the statistical prop-
erties of spike counts in time windows of fixed durations (count analysis)
(Cox and Lewis, 1966).

Interval sequences and distributions of order k
Let ti represent the EOD period number in which the ith spike occurs. We
set the time origin to be such that t1 5 1. Interval sequences of order k are
defined as (Rodieck et al., 1962; Moore et al., 1966)

Sk~i! 5 tki11 2 tk~i21!11, 1 # i #
n 2 1

k
, (1)

where n is the total number of spikes. The sequence Sk is a discrete-time
stochastic process of strictly positive integers. The first-order interval
sequence S1(i) 5 ti11 2 ti is the sequence of ISIs, S2(i) is the sequence of
times between every second spike, etc. Let Ik be the normalized kth order
interval histogram (IH) constructed from Sk. Then Ik(j) is the probability
of observing an interval of length j in the sequence Sk. We denote the mean
and variance of Ik by I#k and Var(Ik ), respectively. In this paper, interval
sequences and IHs were calculated for orders k up to 4096. In the
neurophysiology literature, I1 is used extensively and is referred to as the
ISI distribution. The shape and statistical properties (mean and variance)
of the ISI distribution are often used to characterize firing patterns and
variability of spike timing. However, the ISI provides a characterization of
spike variability only on time scales comparable to the mean ISI. Higher-
order interval distributions provide information about variability over
longer time scales and about dependencies in the ISI sequence.

Dependency of an interval on the immediately preceding interval was

analyzed using the joint interval histogram I(j1 , j2 ), which reflects the
probability of observing an ISI of length j1 followed by an ISI of length j2
(Rodieck et al., 1962). The joint interval histogram is constructed from the
sequence S1 by binning all overlapping tuples (S1(i), S1(i 1 1)), where 1 #
i # n 2 1. Figure 1, B and D, shows plots of the joint interval histogram
corresponding to the sampling resolutions of Figures 1 A and C,
respectively.

Count distributions
An alternate analysis of spike train variability can be made using spike
count distributions (Barlow and Levick, 1969a,b; Teich and Khanna, 1985).
Proceeding as for interval analysis, count statistics were obtained from two
measures: count sequences and count histograms. Let T be the number of
EOD periods in which a count is to be performed. Then we define the
count sequence NT by counting the number of spikes occurring in blocks of
T contiguous EOD cycles. This can be expressed as:

NT~i! 5 O
j5~i21!T11

iT

x~ j!, 1 # i #
n
T

, (2)

where i refers to the block number in the sequence and n is the total
number of recorded spikes. The normalized count histogram CT was also
calculated from NT , so that CT(m) is the probability of obtaining m spikes
in a count window of duration T EOD cycles. The mean and variance of CT
are denoted by C# T and Var(CT ), respectively. Count sequences and histo-
grams were calculated for T values ranging from 20 to as many as 50,000
EOD cycles, depending on data availability and subject to a minimum of 10
counting blocks.

Spike train models
To gain an understanding of the process that generates the observed spike
train data x(i), we created surrogate spike trains using three model systems
that reproduce certain statistical features of the afferent data.

Binomially generated spike train (B). The classic description of a P-type
afferent is that it is a “probability coder.” Namely, the afferent fires
irregularly with a per-cycle probability p that is constant under baseline
conditions, but is subject to modulation in the presence of external stimuli.
Thus, the simplest model of P-unit baseline activity is a process that emits
a spike in any given EOD cycle with constant probability p independent of
previous history. In a continuous-time framework, a constant firing prob-
ability per unit time gives rise to a homogeneous Poisson process, which
frequently serves as a basis for models of spontaneous activity in neural
spike trains (Tuckwell, 1988). In the discrete-time framework considered
here, a constant firing probability per time step (one EOD cycle) gives rise
to a binomial process. Whereas the Poisson process has exponentially
distributed ISIs and Poisson-distributed spike counts, the binomial process
has geometrically distributed ISIs and binomially distributed counts (see
Eqs. 10 and 12, Appendix A). Surrogate binomial spike trains B were
generated by shuffling the observed spike sequence x(i) to remove all
dependencies between adjacent EOD periods. Per-cycle firing probability
p remains unchanged because shuffling preserves the total number of
spikes and EOD periods.

Zeroth-order Markov process (M0 ). The binomially generated spike train
matches p but does not guarantee that the interval distributions will be the
same as the data. A surrogate spike train that preserves p as well as the ISI
distribution I1 , can be generated by randomly shuffling the ISI sequence
S1 , rather than shuffling the spike train x. This preserves the total number
of intervals and the distribution of intervals but removes dependencies
between neighboring intervals in the sequence (Longtin and Racicot,
1997a). For reasons discussed below, this process will be referred to as M0 ,
indicating that it is a zeroth-order Markov process.

First-order Markov process (M1 ). Interval distributions of experimentally
observed spike trains often exhibit dependencies on prior activity and are
thus nonrenewal (Kuffler et al., 1957; Werner and Mountcastle, 1963; Teich
et al., 1990; Lowen and Teich, 1992). Surrogate spike trains that preserved
dependencies between adjacent ISIs were constructed from the afferent
data. First, all adjacent pairs of intervals (ji , ji11) were tabulated and sorted
into groups, each having identical first element. A group, say with first
element ja , was selected at random, and a tuple was drawn, say (ja , jb ). The
next tuple was drawn at random from the group which had first element jb.
If this tuple was (jb , jc ), the resultant of the two draws was the triplet (ja ,
jb , jc ). All draws were made without replacement. Continuing in this
manner, an ISI sequence was constructed that had joint probability I(j1 , j2 )
that matched the data. As discussed below, the resulting sequence is a
first-order Markov process and will be denoted by M1.

The binomial (B) and zeroth-order Markov (M0 ) processes are examples
of renewal processes (Cox, 1962) because successive intervals in the ISI
sequence S1 are independent and identically distributed. The first-order
Markov process (M1 ) is a nonrenewal process because intervals are not
independent. Appendix A summarizes some results for renewal processes.

Measures of variability
A common measure of spike train variability is the coefficient of variation
of the ISI distribution CVI , defined as the SD of the ISI distribution
divided by its mean. Because it is a dimensionless quantity, it can be used
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for comparing the variability of two distributions even when they differ in
their means. To measure variability of ISIs on different time scales, we also
computed CVI for higher order interval distributions. The coefficient of
variation CVI(k) for the kth order interval distribution Ik is:

CVI~k! 5 Var~Ik!
1/2/I#k. (3)

Another useful measure is the variance-to-mean ratio of Ik , denoted
FI(k):

FI~k! 5 Var~Ik!/I#k (EOD cycles). (4)

Although this measure has the disadvantage that it is not dimensionless,
it has the useful property that for all orders k, it is constant for a renewal
process (see Appendix B). For any process that is more regular than a
renewal process, the variance-to-mean ratio decreases with increasing k.

Analogous to the measures of variability for interval sequences, it is
possible to define similar measures for count sequences NT. Proceeding as
above, the coefficient of variation CVC(T) for the count distribution CT(i)
is defined as:

CVC~T! 5 Var~CT!1/2/C# T. (5)

For spike count distributions, the variance-to-mean ratio is called the
Fano factor (Fano, 1947). It is denoted FC(T) and defined as:

FC~T! 5 Var~CT!/C# T (spikes). (6)

Correlation analysis
History-dependent effects were analyzed by considering the serial corre-
lation coefficient (SCC) rl of the first-order sequence S1 , where l is the lag
in terms of the number of intervening intervals. The rl were computed
from:

r l 5

O
i51

M2l~ ji 2 I#1!~ ji1l 2 I#1!

~O
i51

M2l~ ji 2 I#1!
2 O

i51

M2l~ ji1l 2 I#1!
2!1/2

, l 5 0, 1, . . . , (7)

where j1 , . . . , jM is a sequence of M consecutive ISIs that can start
anywhere in the ISI sequence S1. The values of rl range from 11 (perfect
correlation) to 21 (perfect anti-correlation), and rl 5 0 when intervals are
uncorrelated.

To determine if the rl were significantly different from zero, the se-
quence S1 was divided into nonoverlapping blocks each having M 5 1000
elements S1(i), . . . , S1(i 1 M 2 1), and the rl were determined for each
block. The sequence S1 was then shuffled to eliminate dependencies
between intervals, if any, and the rl were again evaluated for the same
number of blocks M. For each lag, the unshuffled and shuffled SCCs were
tested under the null hypothesis that the two populations were identical. A
Wilcoxon rank sum test was used to test the hypothesis at a significance
level of p 5 0.01.

Analysis of Markov order
SCCs do not completely characterize dependencies between ISIs. This can
be seen from Equation 7 where the SCC at lag l depends only on the pairs
(S1(i), S1 (i 1 l)) but does not depend on the intervening (l 2 1) lags.
Higher-order history-dependent effects in the interval sequence S1 can be
modeled by Markov chains (Nakahama et al., 1972; van der Heyden et al.,
1998). The ISI sequence S1 can be described by a Markov chain of order n,
if intervals in the chain are dependent on exactly n preceding intervals. If
the intervals are independent, the process is referred to as zero-order
Markov (M0 ). Examples of such processes are the binomially generated
spike train (B) and shuffled ISI process M0 described above. The process
M1 , on the other hand, is first-order Markov because the statistics of the
current interval are completely determined given the previous interval.

Consider a sequence of ISIs {jm , jm21, . . . , j0}, where jr refers to the rth
lag relative to the current ISI j0. For a Markov chain we can define the mth
order transition probability as p(j0ujm , . . . , j1 ), which is the probability of
observing the interval j0 given that we have observed the sequence {jm ,
jm21, . . . , j1} in the immediate past. Note that the definition of the mth
order transition probability does not say anything about the order of the
chain itself. The Markov order n of the chain is defined as the smallest
value of n for which p(j0ujm , . . . , jn , . . . , j1 ) 5 p(j0ujn , . . . , j1 ) for all m $
n. Hereafter, we use the symbol m to denote the order of the transition
probability, and the symbol n as the fixed number representing the order of
the Markov chain. The transition probabilities p(j0ujm , . . . , j1 ) can be
estimated from the experimentally observed ISI sequence by counting all
occurrences of j0 immediately after the tuple (jm , . . . , j1 ).

Given an experimentally observed ISI sequence, we wish to determine
the Markov order of the underlying process that generated the sequence.
This can be done by comparing transition probabilities obtained from the
data with transition probabilities of surrogate spike trains that are con-
structed to be of known Markov order. Statistical comparisons can be
made using the mth order conditional entropy hm as a test statistic (van der
Heyden et al., 1998). The hm are defined as:

h0 5 2 O
j0

p~ j0!log p~ j0! , (8)

hm 5 2 O
jm,. . .,j0

p~ jm, . . . , j1! p~ j0ujm, . . . , j1!log p~ j0ujm, . . . , j1!, m $ 1 ,

(9)

for all possible tuples (jm , . . . , j0 ) having nonzero joint probability p(jm ,
. . . , j0 ). The conditional entropy satisfy hm11 # hm , for all m (Shannon,
1948). For an nth order Markov chain, hm 5 hn for all m $ n.

We follow the procedure of van der Heyden et al. (1998) for testing the
order of a Markov chain. Hypothesis testing was performed for increasing
orders m, beginning with m 5 0. The null hypothesis was that the process
is Markov order m. The alternative hypothesis was that the process is order
(m 1 1) or greater. The test statistic was the (m 1 1)th order conditional
entropy hm11 given by Equation 9. The statistic hm11 was evaluated for
both afferent and surrogate data sets. A total of Rs 5 49 surrogate data sets
were generated, and the rank r of the afferent data set was determined.
Because the test is one-sided, the p value for the test is p 5 r/(Rs 1 1). The
null hypothesis was rejected if p # 0.05.

Hypothesis testing was performed for increasing orders m until the null
hypothesis could not be rejected or until the testing was terminated
because of insufficient numbers of surrogate sequences. The criteria for
terminating the test was Nm , N/Rs , where N was the number of intervals
in S1 , and Nm was the number of distinct (m 1 1) tuples extracted from the
data set. In this case only a lower-bound for the order n could be estimated.

Weak signal detection
The impact of spike train regularity on signal detection performance was
estimated for afferents and the three matched spike train models. The
detection algorithm was based on an ideal observer paradigm (Green and
Swets, 1966) using spike count distributions. For each binary spike train
x(i) (see above), signal windows of duration 100 EOD periods were
selected at regular intervals of 300 EOD periods. A random offset (uniform
between 0 and 99) was added to the starting position of each signal
window. A trial consisted of the addition of a constant number of spikes
(ns ) to each signal window. Spikes were randomly distributed and added
only in those EOD periods that did not already contain a spike. A sequence
of spike counts was then generated using Equation 2 with T 5 100 EOD
periods. If the count exceeded a fixed threshold (see below) a “hit” was
generated for that counting window. Because the threshold can be ex-
ceeded because of random fluctuations in the baseline even when there is
no signal present, a percentage of the hits will be false alarms. Let Ns
denote the total number of counting windows where signal 1 baseline is
present, with Nhs of these windows receiving a hit. Similarly, let Nb denote
the total number of counting windows where only baseline is present, with
Nhb of these windows receiving a hit. Then detection probability is given by
Pd 5 Nhs /Ns , and false alarm probability is given by Pfa 5 Nhb /Nb. The
threshold was chosen such that the false alarm probability Pfa was 0.001 or
less, motivated by the low rate of false strikes observed in our prey capture
studies (Nelson and MacIver, 1999). Trials were repeated for ns 5 1, 2, . . . ,
30, and Pd was evaluated as a function of ns.

RESULTS
Baseline spiking activity in the absence of any external stimulus
other than the fish’s ongoing EOD was recorded from 52 individual
P-type afferent fibers in eight fish. The EOD frequency of an
individual fish was constant and ranged from 750 to 1000 Hz.
Afferent baseline record lengths ranged from 83 to 2048 sec, with
a median of 428 sec. The firing rate for individual afferent fibers
was nearly constant over the duration of the recording. Baseline
firing ranged from 65 to 575 spikes/sec, with a population mean of
260 6 124 spikes/sec (mean 6 SD). These values are in agreement
with previously reported results for P-type afferents in this species
(Xu et al., 1996).

Interspike interval analysis
The discrete time interspike interval histogram for a representative
spike train is shown in Figure 1C. For this unit, ISIs range from 1
to 7 EOD cycles (I#1 5 2.9 EOD periods; CVI(1) 5 0.47). Mean ISIs
of afferents ranged from 1.4 to 14.2 EOD cycles with a population
mean of 4.2 6 2.3 EOD cycles (Fig. 2A). The coefficient of
variation of the ISI distribution ranged from 0.15 to 0.79 with a
population mean of 0.44 6 0.16 (Fig. 2B). Thus, on average, the SD
of the ISI is ;44% of the mean, which reflects a considerable
degree of variability in the baseline ISI distribution.

A representative joint interval histogram, which provides infor-
mation about dependencies between adjacent intervals is shown in
Figure 1D. Long intervals were more likely to be followed by short
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intervals and vice versa. Almost all fibers demonstrated a similar
pattern.

The first-order ISI provides a characterization of spike time
variability only on time scales comparable to the mean interspike
interval. To characterize spike variability over longer time scales,
the statistical properties of the higher-order interval distributions
Ik must be considered. In particular it is informative to examine
how the SD (sI(k)), coefficient of variation CVI(k), and the
variance-to-mean ratio FI(k) vary as a function of interval order k.
These are shown in Figures 3A–C respectively, for a representative
afferent fiber (E, solid line). The sI measured in EOD periods (Fig.
3A) grows slowly as k increases from 1 to ;60. Thereafter it
increases rapidly (note logarithmic coordinates). Given that the
mean of Ik obeys I#k 5 kI#1 , i.e., it grows linearly with k, the initial
slow growth in sI results in a decrease in the coefficient of variation
CVI(k) (Fig. 3B) from an initial value of 0.58 (k 5 1) until it reaches
a plateau level of ;0.007 for interval orders k . 100. Thus, for
high-order intervals, the SD is ;0.7% of the mean. This represents
a reduction in CVI on long-time scales by a factor of ;80 relative
to the CVI for the ISI. Similarly, for this unit, the variance-to-mean
ratio FI(k) drops rapidly with increasing k from an initial value of
0.69 and reaches a minimum value of 0.02 for k 5 59. Thereafter,
FI increases steadily for larger k. Both the minima in the FI curve
and the knee in the CVI curve are a consequence of the transition

in the behavior of sI from slowly varying to rapidly increasing (Fig.
3A).

The trends observed in sI , CVI and FI for this representative
unit were consistent across the entire population. Figure 3D–F
illustrates the population distribution for all 52 fibers by plotting
the median value (E, thick line) bracketed by the upper and lower
quartiles (thin lines). For each fiber, we also determined the interval
order kmin, which gave rise to the minimum variance-to-mean ratio
FI (Fig. 3C). The kmin were distributed across the population as
shown in the gray histogram (Fig. 3F). The kmin for the population
had a mean value of 42 6 35. When these values are converted to
EOD periods (I#1 kmin) or milliseconds (I#1 kmin 1023/f), they corre-
spond to a mean time of 152 6 121 EOD periods (or 176 6 141
msec). The population means for the various measures at kmin
were: sI , 2.9 6 1.4 EOD periods; CVI , 0.03 6 0.02; and FI , 0.08 6
0.07 EOD periods. For 24 of 52 fibers, the SD was ,2% of the
mean interval length at kmin (Fig. 4A). This should be contrasted
with the SD of the ISI where the mean CVI(1) for the population
was 44% of the mean ISI (Fig. 2B).

The higher-order interval measures suggest that there may be
two different regimes in time demarcated by kmin. When k , kmin,
sI grows very slowly, and hence, both CVI and FI decrease as k21.
That is, the interval distribution becomes less variable as k in-
creases. When k . kmin, sI grows in proportion to k, and this causes
CVI to plateau and FI to increase as k. In this regime, variability
increases with increasing k. To analyze and interpret these results,
interval statistics for afferents were compared with surrogate spike
trains B, M0 , and M1 described earlier.

Comparison with renewal process models
Binomial model
For each afferent fiber, a binomial model B was constructed from
the p (per-cycle probability of firing) value of the fiber. Under
baseline conditions p is a constant and is independent of firing
activity in preceding EOD cycles. This model follows from a
description of P units as probability coders (see Materials and
Methods). The mean p for the population of fibers was 0.31 6 0.14
and agrees with previously published results (Xu et al., 1996).

ISI and joint interval distributions for a representative fiber are
shown in Figure 5, A1 and A2 (same data as in Fig. 1C,D). The
corresponding distributions for a binomial model with the same p
value are shown in Figure 5, B1 and B2. Although the binomial
model has the same p value, and thus the same mean ISI I#1 5 1/p,
it does not match the ISI or joint interval distributions of the data.

Nevertheless, the binomial model serves as a useful benchmark
because the coefficient of variation CVI and variance-to-mean ratio
FI can be computed analytically (see Appendix B). For the kth-order
interval distribution, sI(k) 5 =k(1 2 p)/p, CVI(k) 5 =(1 2 p)/k,
and FI(k) 5 (1 2 p)/p 5 constant. Spike trains generated from this
model were subject to the same analysis as the data. These are
shown in Figure 3A–C (h, dotted line). Because sI(k) } k1/2, in
logarithmic coordinates, sI(k) grows linearly with interval order k
with a slope of 1/2 (Fig. 3A). It can be seen that the afferent has a
much slower increase in sI for k , 60, but a much faster increase
for orders .60. CVI(k) for the afferent data decreases more rapidly
with increasing k (nearly as k21) than the binomial model for which
CVI(k) } k21/2 (Fig. 3B, h) but eventually reaches a plateau for
large interval orders. The distinction between the binomial model
and the afferent data is most strikingly illustrated by the plot of the
variance-to-mean ratio FI(k) shown in Figure 3C. For the binomial
model FI(k) 5 constant, but the afferent data shows a strong
dependence on interval order, initially dropping rapidly (nearly as
k21) and reaching a minimum value for an interval order near 60.
The population medians of sI , CVI , and FI for a binomial process
with mean p obtained by averaging over all afferents are also shown
in Figure 3D–F for comparison.

For each afferent fiber, we also determined the ratio of the
FI(kmin) for surrogate divided by afferent. Because the means of Ik
are the same for afferent and the surrogate data sets (by construc-
tion), the above ratio is also the ratio of the variances of afferent

Figure 1. Interval histograms of a P-type primary afferent fiber from the
weakly electric fish Apteronotus leptorhynchus showing continuous-time (A,
B) and discrete-time (C, D) representations. A, ISI histogram. Abscissa is
multiples of EOD period (EOD frequency, f 5 762 Hz). B, Joint distribu-
tion of adjacent intervals ( joint interval histogram). Abscissa and ordinate
are the ith and (i 1 1)th ISIs in EOD periods, respectively, with symbol
sizes proportional to probability of occurrence. Bin width is 180 msec in A
and B. Resampling the spike train at the EOD rate restricts the interspike
intervals to integer values as shown in C (ISI histogram) and D ( joint
interval histogram). This afferent had a mean ISI of 2.9 EOD cycles and
coefficient of variation (CVI(1)) of 0.47. Subsequent analysis in this paper
is restricted to the discrete-time representation, in which spike trains are
sampled at the EOD rate.

Figure 2. Population summaries of ISI distributions (N 5 52). A, Distri-
bution of mean ISI (I#1 ). Abscissa is EOD cycles. B, Coefficient of variation
of ISI (CVI(1)).
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and binomial model at k 5 kmin. This ratio provides a measure of
how much more regular the afferents are in comparison with the
binomial process. Figure 6A shows the distribution of this number
for the population. At k 5 kmin the afferents exhibited variance-
to-mean ratios that were on the average 50 times smaller (mean,
50 6 27) than the FI for binomial spike trains.

Zeroth-order Markov model (shuffled ISI)
The binomial model agrees with the data only in the mean value of
the ISI distribution, but it fails to accurately describe the ISI
distribution. The zeroth-order Markov model (M0) was con-
structed for each afferent by shuffling the ISI sequence S1 for that
unit (see Materials and Methods). Thus, it matches the ISI distri-
bution of the afferents. Figure 5, C1 and C2, shows the ISI and joint
interval distributions for this model. It can be seen that the model
matches the ISI of the afferent (Fig. 5, compare C1, A1), however
it does not correctly model the joint interval distribution (Fig. 5,
compare C2, A2).

Because M0 is a renewal process, the coefficient of variation CVI
and variance-to-mean ratio FI can be computed analytically (see
Appendix B): CVI(k) 5 CVI(1)/=k, where CVI(k) 5 Var(I1)1/2/I#1 ,
and FI(k) 5 Var(I1 )/I#1 5 constant. Results for this model matched
to a representative afferent are shown in Figure 3A–C ({, dash–dot

line). Note that sI(1), CVI(1), and FI(1) (i.e., the y intercepts) are
the same for M0 and afferent because M0 was constructed to match
the first-order statistics of the data. The population sI , CVI , and FI
curves for this model are shown in Figures 3D–F, respectively
(dash–dot line).

Although M0 is more regular than the binomial model B, it still
does not capture the intermediate-term regularity of the afferent
data. At the minimum of the variance-to-mean ratio curve, FI for
the data was on average 14 times smaller (mean, 13.8 6 10.1) than
for M0 (Fig. 6B). Whereas this is an improvement over the bino-
mial model, the reduction in variability with increasing order of
intervals is not as great as that demonstrated by afferents.

The above results show that variability in afferent interval dis-
tributions cannot be accounted for by an underlying renewal pro-
cess. In particular, at the minima in the FI curve, which occurs on
a time scale of ;60 intervals (;200 msec), afferents have a variance
that is an order of magnitude smaller than that predicted by a
renewal process. Thus, we must look at nonrenewal properties for
a better understanding of this dramatic reduction in spike train
variability.

Comparison with nonrenewal models
Renewal models are “memoryless”, that is interval distributions
are independent of previous intervals. However, this is not the case
for P-type afferent data, as illustrated by the joint interval distri-
bution (Fig. 5A2). Long intervals in the sequence are more likely to
be followed by short intervals and vice versa. In contrast, neither of
the renewal models (B, M0) discussed above incorporate this de-
pendency, as can be seen from Figure 5, B2 and C2.

The simplest nonrenewal model that incorporates the observed
long–short dependency is the first-order Markov process M1 de-
scribed earlier (see Materials and Methods) where the probability
of generating the next interval depends only on the current inter-
val. Figure 5D2 shows the joint interval histogram for the fiber
shown in Figure 5A2. By construction, the ISI distribution I1(j1)
(Fig. 5D1), joint interval distribution I(j1 , j2) (Fig. 5D2), and
second-order interval I2(j1) distribution (data not shown) are iden-
tical to those of the afferent.

Figure 3. SD (sI , lef t), coefficient of variation (CVI , middle), and variance-to-mean ratio (FI , right) of interval distributions. A–C, Representative fiber
shown in Figure 1; D–F, medians of population (N 5 52). Abscissa is the interval order. Symbols are: afferent data (E) and surrogate data sets from
binomial B (h), zeroth-order Markov M0 ({), and first-order Markov M1 (‚) processes. In C, the afferent FI curve exhibits a minimum for interval order
kmin 5 69 (vertical dashed line). In D–F, the afferent data (E) are medians for the population (N 5 52) and the thin lines are upper and lower quartiles.
Also shown are renewal processes (binomial, dotted; zeroth-order Markov, dash-dot). The histogram in F represents distribution of kmin in the afferent
population (probability on right axis), with mean value of 42 (vertical dashed line).

Figure 4. Population summaries of coefficient of variation evaluated at the
minimum in the variance-to-mean ratio curve. A, CVI for intervals at order
k 5 kmin. B, CVC for spike counts at count window length T 5 Tmin (see
later in Results).
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Results for the M1 model are shown in Figure 3A–C (‚, dashed
line). sI , CVI , and FI are identical for M1 and afferent for k 5 1 and
k 5 2 (by construction), but thereafter, M1 does not fully capture
the continued decrease in variability observed in the afferent data,
although it is better than the two renewal models B and M0.

At the minimum order kmin, FI for the afferents was on average
a factor of four times smaller than the M1 model (mean, 4 6 2) (Fig.
6C). Thus, even a nonrenewal model that correctly incorporates the
long–short correlations exhibited in the data cannot adequately
account for the longer term regularity of afferent spike trains. This
result indicates that dependencies in the underlying nonrenewal
process go beyond the immediately preceding ISI. The analyses in
the following sections are intended to address how far back in time
the “memory” effect extends.

Interval correlations
Correlations over longer durations were analyzed for each afferent
and its matched M1 model using serial correlation coefficients (Eq.
7). Figure 7A shows the population distribution of the correlation
coefficient between adjacent ISIs (r1). The r1 ranged from 20.23 to
20.82 with a population mean of 20.52 6 0.14. That is, all
afferents exhibited strong long–short ISI dependency. The distri-

bution of correlation coefficients in the population for lags of 2 and
3 are shown in Figure 7, B and C. Most afferents exhibit positive
correlations for lag 5 2 (r#2 , 0.10 6 0.18) and weak negative
correlations for lag 5 3 (r#3 , 20.07 6 0.11). However, for lags larger
than one, the coefficients become smaller, and we used more
rigorous statistical criteria to determine the extent and significance
of the rk.

Serial correlation coefficients were estimated for all fibers for the
first 10 lags. Coefficients are shown for three representative fibers
in Figure 8 (solid line), and the first-order Markov model M1
(dash-dot line). Spike trains from the renewal models B and M0 did
not exhibit any correlations (i.e., rk 5 0, for all k) because of
independence of ISIs (data not shown). For both afferent and
model M1 we used a shuffled data technique to determine the
maximum lag k for which the rk were significantly different from
zero (see Materials and Methods).

Although all fibers exhibited statistically significant correlations
extending back several lags, so did the M1 model. In fact, in almost
all cases, the M1 model showed much stronger correlations than the
afferent for all lags k $ 2. Thus, even a Markov process that is
first-order (M1) can have nonzero SCCs that extend much further
back in time than a single interval.

The following example illustrates the converse effect that the
SCC for lag l can be small even when there are strong lth order
dependencies in the data. To illustrate this point we took the ISI

Figure 5. ISI histogram and joint interval histogram of the afferent spike train shown in Figure 1 (column A) and surrogate spike trains obtained from
the afferent data (columns B–D). A1–D1, Show the first-order ISI histograms I1(j), and A2–D2 show the joint interval histogram I(j1 , j2 ) of adjacent ISIs.
Size of the circle is proportional to joint probability. B, The binomial spike train matches the mean ISI I#1 , but it does not match either the ISI or joint ISI
distributions. C, The zeroth-order Markov spike train (M0 ) matches only ISI, but not the joint interval distribution. D, The first-order Markov spike train
(M1 ) matches both the ISI and joint ISI of the afferent spike train. ISI sequences for B and M0 are renewal processes, whereas M1 is a nonrenewal process.

Figure 6. Population summaries of the decrease in interval variance-to-
mean ratio (FI ) observed in afferents when compared to FI of the matched
surrogate spike trains: A, binomial, B, zeroth-order Markov (M0 ), and C,
first-order Markov (M1 ). Each histogram is the distribution of the ratio of
the FI(kmin) for surrogate divided by afferent. It measures the decrease in
variability of intervals in afferents with reference to the surrogate spike
train. Note different scales on abscissa.

Figure 7. Population summaries of serial correlation coefficients (r) of
afferent ISI sequences. A–C, First three lags, r1–r3 , respectively. The
vertical dashed line is r 5 0. The negative correlation for adjacent ISIs (r1 )
reflects the strong long–short dependency in the ISI sequence.
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sequence S1 for the representative afferent illustrated in Figure 1
and analyzed the distribution of Y 5 S1(i), given X 5 S1(i 2 4) for
two example patterns: (X, ?, ?, ?, Y) and (X, 2, 2, 2, Y). In the first
pattern the “?” represents any arbitrary ISI, i.e., X and Y were not
conditioned on the intervening intervals (S1(i 2 3), S1(i 2 2),
S1(i 2 1)). However, in the second sequence, X and Y were
conditioned on the occurrence of a specific sequence (S1(i 2 3) 5
2, S1(i 2 2) 5 2, S1(i 2 1) 5 2). We then calculated the joint
probability of Y given X as for Figure 1D (see Materials and
Methods). The results are shown in Figure 9.

Figure 9A shows that X and Y are only weakly correlated (r4 5
0.014; p 5 0.01). It is useful to compare this histogram with that of
the zeroth-order Markov process for the same afferent as shown in
Figure 5C2. The zeroth-order model is a renewal process where
intervals are uncorrelated for all lags k. The similarity between the
two histograms suggests a loss of correlation. In contrast, the
pattern (X, 2, 2, 2, Y) has a joint distribution shown in Figure 9B,
and it can be seen that conditioning very strongly influences the
correlation structure of the joint distribution. Because serial cor-
relation analysis is based on unconditioned distributions, long-term
memory effects may average out.

Analysis of Markov order
The above examples illustrate the shortcomings of serial correla-
tion analysis of memory effects and indicate that a more direct test
of Markov order is needed. Toward this end we applied a statistical
test to explicitly test the Markov order of the process (see Materials
and Methods). Each afferent was tested against surrogate data sets
that were constrained to match the afferent up to a specified order
m. The test statistic was the conditional entropy hm11. Testing

began with m 5 0 and continued for increasing values of m until the
null hypothesis (process is of order m) could not be rejected.

Results for two representative afferents are shown in Figure 10,
which depicts the hm for afferent (solid line) and mean hm for 49
realizations of the surrogate data (dashed line). For the unit shown
in Figure 10A, testing showed that afferent data had significantly
smaller hm(*) than surrogate data (h) for orders up to 3. For orders
4 and 5, there was no significant difference in the hm (E). It was
concluded that this afferent could be described by a third-order
Markov process. Testing terminated for only 5 of 52 afferents with
the null hypothesis being accepted. Testing also terminated if there
was not sufficient data for the afferent. This is shown in Figure 10B,
where the afferent and surrogate data sets were significantly differ-
ent up to fifth-order. There was not sufficient data to test for higher
orders, and thus m 5 5 is only a lower-bound on the order of the
process for this afferent. Testing terminated for the majority of
afferents (47 of 52) in this way.

Table 1 summarizes the test for Markov order. The total number
of afferents for which the order was at least m are listed for each m
in the top row. Of these, the number of afferents for which the
order was exactly m are shown in the bottom row. For example, all
52 afferents were at least order 2 (top row, m 5 1, 2), with one
afferent being exactly order 2 (bottom row, m 5 2). Similarly, 51
were at least order 3, of which three afferents were exactly order 3.
Thus, discarding the three afferents that were exactly order 3, only
48 afferents were tested for m 5 4. Four of these could not be tested
because of insufficient data, leaving 44 afferents that were at least
order 4 (top row, m 5 4). Of these afferents, only one was exactly
order 4 (bottom row, m 5 4). The test proceeded in this manner
until afferents were exhausted. Most afferents (44 of 52) were
fourth-order Markov or greater, and approximately a quarter of the
units (12 of 52) were seventh-order Markov or greater.

Count distributions
For nonrenewal processes, spike count distributions can provide
additional information about the process and can complement
higher-order interval analysis. Spike count distributions were ana-
lyzed from the count sequence defined by Equation 2. The SD sC ,
coefficient of variation CVC, and variance-to-mean ratio FC (also
called Fano factor) of the spike count distributions were computed
as a function of window duration T. T plays the same role in count
analysis as interval order k in interval analysis.

Figure 11A–C shows the statistical measures for the same rep-
resentative afferent fiber, whose interval analysis was described
earlier (Fig. 3A–C). As with interval analysis, spike count distribu-
tions exhibited a minimum variance-to-mean ratio (Fano factor
FC) at an optimum count window of duration Tmin. For the fiber
shown in Figure 11C, Tmin 5 280 EOD periods (368 msec) with

Figure 8. Representative serial correlation coefficients (rk , ordinate) for
lags k 5 1, . . . , 10 (abscissa). The rk measure correlation between an ISI
and the kth preceding ISI. A–C show rk for three representative afferents
(solid line) and for their matched surrogate first-order Markov spike train
M1 (dash-dot line). Coefficients were tested against the null hypothesis that
there was no correlation between the intervals at p 5 0.01. The rk which are
significantly different from zero are indicated by *, whereas E indicates no
significant correlation.

Figure 9. An illustration of how correlation analysis may fail to reveal
memory effects in spike trains. A, Patterns of four adjacent ISIs (X, ?, ?, ?,
Y) where “?” is any arbitrary value, were extracted from the ISI sequence S1
for the afferent shown in Figure 1. The joint probability distribution of X
and Y were estimated (probability is proportional to diameter of the circle).
The joint distribution suggests a very weak correlation between X and Y
(see Results). B, Patterns of four adjacent ISIs (X, 2, 2, 2, Y) were extracted
as in A. The distribution of X and Y is strongly influenced by conditioning
it on the intermediate sequence (2, 2, 2). Serial correlation coefficients
provide information from the distribution shown in A and not from the
conditioned distribution shown in B. Hence, long-term memory effects may
not be noticeable from correlation analysis.

Figure 10. Conditional entropy hm for two representative afferent spike
trains (solid line) as a function of order m. The mean hm for 49 surrogate
sequences which matched the data exactly up to order (m 2 1) are also
shown (h, dash line). Afferent hm , which were significantly different from
surrogate data are shown as *. Differences between afferent and surrogate
data which were not significant are shown as E. A, Afferent spike train that
was described by a third-order Markov process. B, Spike train for which
surrogate and afferent data sets had significantly different hm for all orders
tested. Testing terminated because of insufficient data. The order of the
process was at least 5, i.e., the number represents only a lower-bound. See
Table 1 for a summary of testing.
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FC(Tmin) 5 0.01 spikes. Mean spike count at Tmin was 94 6 0.98
spikes, i.e., a SD that is ;1% of the mean (Fig. 11A,B). Beyond this
minimum T, counts became more irregular with increasing T
because of the rapid increase in SD (Fig. 11A). The trends in sC ,
CVC, and FC were observed in all afferents and closely resemble
those seen in interval analysis (Fig. 3). Figure 11D–F summarizes
the median value of sC , CVC, and FC for the population. The
distribution of Tmin across the population is shown in the histogram
overlaying the Fano curves in Figure 11F. Mean Tmin for the
population was 233 6 172 EOD periods (270 6 200 msec), and
mean FC(Tmin) for the population was 0.025 6 0.022. At Tmin
when fibers demonstrate most regular counts, the distribution of
CVC(Tmin) for the population is shown in Figure 4 B. Twenty
seven of 52 fibers had SDs that were ,2% of mean spike count.
Mean CVC(Tmin) for the population was 0.026 6 0.023.

As was the case for interval analysis, the spike count analysis
indicates that the afferents are significantly more regular than the
three model spike trains (B, M0 , and M1). The improvement in
regularity measured as a ratio of the Fano factor of the model to
that of the afferent at Tmin is shown in Figure 12. The figure is
similar to Figure 6. Afferents had Fano factors that were on the
average smaller than those of the models by 19.6 6 10.5 (B, Fig.
12A), 6.0 6 4.7 (M0 , Fig. 12B), and 1.7 6 1.0 (M1 , Fig. 12C). Thus,
the count analysis agrees with interval analysis in that the regular-
ity of afferents cannot be explained by renewal models (B and M0)
or even a nonrenewal model that incorporates adjacent interval
dependencies (M1).

Although interval and count analysis are in agreement on the
general trends seen in afferent data, it should be noted that there
are differences between the two. The most significant difference
lies in a determination of the time scale on which afferents may be
considered most regular. From interval analysis, the mean time
estimated for the population at their kmin was 176 msec (see
Interspike interval analysis), which is smaller than the mean Tmin
estimated at 270 msec from the count analysis (see above).

Table 1. Test of Markov order for N 5 52 units

Number of afferents

Markov order m

0 1 2 3 4 5 6 7 8 9 10 11

Order $ m 52 52 52 51 44 24 16 12 4 3 1 1
Order 5 m 0 0 1 3 1 0 0 0 0 0 0 0

Each unit was tested under the null hypothesis that it was generated by a Markov process of order m, where initially m 5 0. If the unit failed the test then it was considered
to have order $ m, and m was increased and the test performed again. For each order m (columns), the number of units that were at least order m are listed in the top row.
As m increased, the number of units tested decreased either due to insufficient data or because a unit satisfied H0 for some previous order (bottom row).

Figure 11. SD (sC , lef t), coefficient of variation (CVC , middle), and variance-to-mean ratio (Fano factor FC , right) of spike count distributions. A–C,
Representative afferent (same afferent shown in Fig. 3A–C). D–F, Medians of population (N 5 52). Abscissa is count window duration T in EOD cycles.
Symbols and layout follow Figure 3. In C, afferent FC curve exhibits minima when count window Tmin 5 280 EOD periods (vertical dashed line). In D–F
the dotted line is the median for surrogate binomial data with mean ISI equal to that of the afferent population. The histogram in F is the distribution of
Tmin in the afferent population, with mean value Tmin 5 233 EOD periods (vertical dashed line).

Figure 12. Population summaries of the decrease in count variance-to-
mean ratio (Fano factor, FC ) observed in afferents when compared to FC of
the matched surrogate spike trains: A, binomial; B, zeroth-order Markov
(M0 ); and C, first-order Markov (M1 ). Each histogram is the distribution of
the ratio of the FC(Tmin) for surrogate divided by afferent. It measures the
decrease in spike count variability in the afferents with reference to the
surrogate spike trains. Note different scales on abscissa.
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Weak signal detection
The regularity of primary electrosensory afferent spike trains is
most pronounced for count windows on the order of ;200 EOD
periods (;200 msec). Here, we illustrate the impact that this spike
count regularity could have on detection performance, if the ner-
vous system were to implement a detection algorithm using a
comparable integration time constant. Full analysis of the optimal
detection algorithm for the actual spatiotemporal profiles of natu-
rally occurring electrosensory signals is beyond the scope of this
paper. Here, we demonstrate the magnitude of the effect by con-
sidering a simplified signal detection experiment in which the
stimulus is assumed to transiently increase the spike count on an
individual afferent by a fixed number of spikes ns within a fixed
time window.

The detection algorithm is based on an ideal observer paradigm
(Green and Swets, 1966) using spike count distributions (see Ma-
terials and Methods). It implements a binary hypothesis testing
procedure illustrated schematically in Figure 13A. In the absence of
a stimulus, the spike count is drawn randomly from the baseline
spike count distribution (Fig. 13A, Baseline). In the presence of the
stimulus, the spike count is assumed to be drawn from a shifted

version of the same distribution, with an offset of ns spikes (Fig.
13A, Baseline 1 Signal). Given an observed spike count, the de-
tection experiment decides which of the two distributions is most
likely to have generated the observation. If the count exceeds a
fixed threshold (Fig. 13A, Threshold), then we decide that a stim-
ulus event has occurred. This could be a false alarm because of a
baseline fluctuation being erroneously classified as a stimulus event
(area marked as Pfa under the Baseline curve) or a correct detection
if a stimulus was in fact present (area marked as Pd under the
Baseline 1 Signal curve).

Simulated signal detection experiments were performed using
afferent data from a representative unit, as well as three matched
spike train models (B, M0 , and M1). The results are shown in
Figure 13B. In all cases the detection probability Pd increased with
increasing signal strength ns , but it increased more rapidly with
increasing number of added spikes for the afferent than for any of
the three models. If we arbitrarily select Pd 5 0.90 for comparison
purposes (Fig. 13B, horizontal dashed line), we find that an addition
of two or three spikes results in a 90% detection probability for the
afferent spike train, whereas a comparable level of performance
requires approximately five spikes for M1 , 10 spikes for M0 , and 18
spikes for the binomial process B. Specifically, comparing results
for the afferent data and the best-matched renewal process model
M0 , we see that the afferent spike train permits efficient and reliable
detection of signals that are a factor of 3–5 times weaker than could
be detected if baseline activity were generated by a renewal
process.

DISCUSSION
The principal finding of this study is the remarkable regularity of
P-type afferents on intermediate time scales, given the high vari-
ability of their interspike intervals on short time scales. We mea-
sured variability of intervals using SD (sI), coefficient of variation
(CVI), and variance-to-mean ratio (FI). Across the population of
afferents the coefficient of variation of the first-order ISI, CVI(1)
averaged ;0.44. Higher-order intervals Ik (which are the sums of k
successive ISIs) showed a rapid decrease in CVI. On intermediate
time scales (k ' 50), CVI(k) was ,0.02 for most afferents (Fig. 3E).
In contrast if the intervals were generated by a renewal process,
CVI would decrease as k21/2, and the expected CVI on interme-
diate time scale would have been ;3–5 times larger.

Although CVI is a normalized measure of variability, it is easier
to understand the large improvements in regularity of afferents by
examining how the standard deviation of intervals sI changes with
k (Fig. 3A). For a renewal process sI increases as k1/2, but for
afferents, there is little increase in sI up to k ' 50 (Fig. 3A). It is
as if the spike-generating process were keeping a check on the
cumulative deviation of the successive ISIs from the mean ISI.
Such a regularizing process could cancel deviations so that overall
variability of k successive intervals is approximately the same as the
variability of a single interval. If such a process were responsible for
the observed regularity it would appear that the process is able to
maintain this regularity only over intermediate time scales. This is
seen most clearly in the variance-to-mean ratio curve FI (Fig. 3C).
The FI curve decreases sharply with increasing k, whereas a re-
newal process has constant FI. For the afferent data, FI decreases
until it reaches a minimum (for some afferent specific kmin), after
which it loses regularity and increases with increasing k. The time
scale on which the spike regularity is most pronounced relative to
a renewal process corresponds to interval order kmin. The distri-
bution of kmin in the population of afferents is shown in the gray
histogram of Figure 3F. The population mean was k#min 5 42, which
corresponds to ;175 msec. Spike count distributions (Fig. 11)
demonstrated similar trends, although the estimated time scale
over which spike counts were most regular was somewhat larger
(270 msec).

The rapid decrease in variability has implications for signal
detection. For a renewal process, to achieve a similar reduction in
variability would require a time scale of about kmin

2 , which is ;1700
ISIs, or several seconds. Therefore, in situations where sensory

Figure 13. Signal detectability in afferent spike trains when spikes are
added at random to baseline discharge. A, The detection strategy is based
on a binary hypothesis test. In the presence of a signal, the baseline spike
count distribution (Baseline) is shifted by an amount equal to the increase
in number of spikes caused by signal (Baseline 1 Signal ). A threshold
(vertical dashed line) defines the probability of detection ( gray area, Pd) and
probability of false alarm (black area, Pfa ). By constraining Pfa , Pd can be
maximized. B, Spikes (abscissa) were added randomly to blocks of T 5 100
EOD periods, and a signal detection algorithm (see Results) was given the
task of determining whether signal was present subject to Pfa # 0.001.
Ordinate is Pd , and abscissa is number of extra spikes caused by signal.
Detection experiments were simulated in afferent (E), and surrogate spike
trains from binomial (B, h), zeroth-order Markov (M0 , {), and first order
Markov (M1 , ‚) processes. For the afferent, signal detection performance
at 90% (dashed line) is possible with as few as 2–3 spikes over the baseline
of 35 spikes. Surrogate spike trains required more spikes to achieve the
same level of performance (see Results).
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signals are extremely weak, the regularization process allows reli-
able detection using smaller integration times.

Interval and count variability in other sensory systems
The coefficient of variation of the ISI distribution has long been the
standard measure for specifying spike train variability. For the
benchmark Poisson process, CVI 5 1 for all interval orders. Spike
trains with CVI . 1 (, 1) are more irregular (regular) than a
Poisson process. Spontaneously active neurons demonstrate a wide
range in ISI variability with reported values ranging over two
orders of magnitude from 0.02 (Ratliff et al., 1968) to ;3 (Teich et
al., 1997). In comparison, the values we report here for P-type
electroreceptor afferents had a mean CVI(1) of 0.44 and ranged
from 0.15 to 0.79, reflecting moderate to high short-term variability.

For renewal processes, the ISI distribution is sufficient to com-
pletely describe variability on all time scales (Cox, 1962). For
nonrenewal spike trains, such as P-type afferents reported here, it
is necessary to examine higher-order distributions. Towards this
end, interval distributions Ik or count distributions CT and their
statistical properties can provide useful information about variabil-
ity. Higher-order interspike interval distributions were first intro-
duced by Rodieck et al. (1962), but with the exception of second-
order interval distributions I2 (Teich and Khanna, 1985) they have
not been widely used. This is unfortunate because higher-order
interval distributions convey useful information about variability
on multiple time scales. On the other hand, spike count distribu-
tions have been more widely used in recent years. However, they
have been used primarily to characterize spike trains for which the
Fano factor exhibits power-law growth with count window T, on
time scales extending beyond tens of seconds (for review, see Teich
et al., 1996). Such spike trains exhibit a high degree of irregularity
(FC . 1) that increases with counting time. On the time scales that
are of interest to us (0.1–1 sec), most of the reported work on spike
count distributions are restricted to driven responses (Teich and
Khanna, 1985; Young and Barta, 1986; Relkin and Pelli, 1987;
Shofner and Dye, 1989; Softky and Koch, 1993; Baddeley et al.,
1997; Shadlen and Newsome, 1998) and cannot be directly com-
pared with the results for baseline responses.

History effects and nonrenewal nature of afferent
spike trains
Most experimentally observed spike trains exhibit correlations and
memory effects in the ISI sequence. That is, they are described by
nonrenewal processes. This is true for all P-type afferents reported
here. All afferents had adjacent ISIs that were strongly anticorre-
lated. Anticorrelations have been noted in spike trains of P-type
units in other species of electric fish such as the gymnotid Sternopy-
gus (Bullock and Chichibu, 1965) and Steatogenes (Hagiwara and
Morita, 1963). They have also been reported in many other sensory
systems including visual (Kuffler et al., 1957), auditory (Johnson et
al., 1986; Lowen and Teich, 1992), and somatosensory (Amassian
et al., 1964), and in motor systems (Calvin and Stevens, 1968).
Whereas anticorrelation improves regularity, our results suggest
that it is not sufficient to account for the dramatic improvements in
regularity observed in P-type afferents. We demonstrated that a
first-order Markov process M1 that incorporated the anticorrela-
tions observed in the afferent data could not reproduce the reduc-
tion in variability demonstrated by the afferent spike trains with
increasing T (Fig. 11). This suggested that dependencies between
ISIs persisted over many intervals.

To assess the duration of history-dependent effects, serial corre-
lation coefficients were evaluated. However, SCCs suffer from two
problems. First, even a first-order Markov process can have statis-
tically significant correlations that persist over many intervals (Fig.
8). Second, even if a process is higher-order Markov (Fig. 9B), the
use of serial correlation coefficients can average out effects of
dependencies for lags smaller than the Markov order (Fig. 9A).
Thus, Figures 8 and 9 demonstrate that the SCCs cannot be used to
determine the order of the Markov chain, and an explicit test of
Markov order is required (Nakahama et al., 1972). When explicitly

tested for the order of the underlying Markov chain, the majority
of afferents were typically fourth-order or greater (as also reported
by van der Heyden et al., 1998).

The high degree of regularity exhibited by afferents is a conse-
quence of a nonrenewal process that keeps a check on the deviation
from the mean firing rate over many ISIs. Typically, when an
interval longer than the mean ISI occurs (a “credit”), the next
interval will be shorter than the mean (a “debit”). This gives rise to
the strong long–short anticorrelations observed in the data. How-
ever, when the credit does not get paid back immediately, it is not
forgotten. Rather, it is paid back eventually. This is seen from
Figure 9B where we evaluated the distribution of Y given the
previous occurrence of X in the ISI sequence (X, 2, 2, 2, Y). The
joint distribution shows that the long–short distribution of intervals
persists even when there are a number of intervening intervals
where the debits and credits do not cancel each other. It is likely
that the demands placed on a physiological system for maintaining
precision or regularity of spiking may be more easily achieved by
making adjustments in timing over many intervals rather than over
a few intervals. At present the mechanism causing this remarkable
degree of precision is unknown. Although mathematical models of
the spike-generating process in P-type afferents have been con-
structed (Longtin and Racicot, 1997b; Longtin, 1998), they do not
explain the long-range interval correlations noted here.

Implications for detection of weak sensory signals
The increased spike train regularity that we observe for P-type
afferents on intermediate time scales has important implications for
the ability of the fish to detect weak electrolocation targets. P-type
afferents encode amplitude modulations of the local transdermal
voltage caused by nearby objects (Scheich et al., 1973; Bastian,
1981) (for review, see Zakon, 1986). Objects in the water near the
fish modulate the transdermal potential and thus modulate the
per-cycle firing probability of P-type afferents. Objects that cause a
large change in firing probability are easily detected by the animal.
However, when the object is small, or far away, or has low electrical
contrast with the surrounding water, then the resulting small
change in per-cycle firing probability can be obscured by statistical
fluctuations in the baseline spike activity. Early studies have estab-
lished that the behavioral threshold for Apteronotus is ,1 mV/cm
(Knudsen, 1974). Bastian (1981) extrapolated his data to show that
in this range, the change in firing rate of P-type afferents is ;1
spike/sec. Thus, at threshold levels of performance the expected
change in firing rate is ,1% (based on a mean discharge rate of 294
spikes/sec as reported by Bastian, 1981).

In behavioral studies of prey capture performed in our labora-
tory, we have shown that Apteronotus can detect small water fleas
(Daphnia magna, 2–3 mm in length) at a distance of ;2 cm from
the electroreceptor array (Nelson and MacIver, 1999). At this
distance, the spatial profile of local transdermal voltage change is a
Gaussian-like bump with a full width at half maximum of ;2 cm
(Rasnow, 1996; Nelson and MacIver, 1999). During prey capture
behavior the fish is typically moving with a relative velocity of ;10
cm/sec relative to the prey. Thus, as the electrosensory image
passes over the receptor array, an individual electroreceptor organ
experiences a transient change in transdermal voltage that lasts
;200 msec. Interestingly, this temporal duration is well matched to
the time scale on which P-type afferents show the greatest increase
in spike train regularity.

Based on computer reconstructions of electrosensory images
from our behavioral studies, we estimate that the peak change in
per-cycle firing probability of P-type afferents at the time of prey
detection is at most a few percentage of the baseline probability
(Nelson and MacIver, 1999). Assuming a typical baseline spike rate
of 300 spikes/sec, this corresponds to approximately one extra spike
of a total of 60 spikes expected in a 200 msec time window on an
individual afferent. This is a weak signal and one that could
potentially be difficult to detect given the relatively high variability
observed in the first-order ISI distribution.

The neural computations required to detect the dynamically
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changing spatiotemporal profile across a population of electrosen-
sory afferents could plausibly be implemented by circuitry in the
brainstem electrosensory nucleus, the electrosensory lateral line
lobe (Shumway, 1989; Metzner et al., 1998). A full analysis of the
optimal detection algorithm is beyond the scope of this paper.
However, in performing such an analysis, it will be extremely
important to take into account the intermediate-term regularity of
P-type afferent spike trains afforded by the underlying nonrenewal
process. If we performed such an analysis assuming that P-type
afferents could be adequately modeled by matching the first-order
ISI distribution and assuming a renewal process model, we would
overestimate the behavioral threshold by a large factor (Fig. 13B).
Thus, it is important for sensory physiologists and neural modelers
to consider potential effects of nonrenewal statistics when analyz-
ing detection thresholds for weak sensory signals in noisy spike
trains.

APPENDIX A
Spike count distributions for discrete-time
renewal processes
For spike trains arising from a discrete-time renewal process, the
distribution of spike counts can be calculated from the distribution
of interspike intervals. To illustrate this, we first present results for
the binomial spike train and then derive expressions relating count
and interval distributions for arbitrary renewal processes.

For a binomial process with constant per-cycle probability of
firing p, the probability of observing an interval of j cycles between
successive spikes is:

I1~ j! 5 p~1 2 p! j21, (10)

which is the geometric distribution with mean I#1 5 1/p. In general,
the probability of observing an interval j between k successive
spikes (i.e., the kth order interval distribution) is:

Ik~ j! 5 H S j 2 1
k 2 1Dpk~1 2 p! j2k j $ k,

0 j , k,
(11)

with mean I#k 5 k/p. Equations 10 and 11 are the discrete time
analogs of the exponential and kth-order gamma distributions,
respectively.

For a binomial process, the number of spikes in a count window
of duration T cycles is distributed according to:

ĈT~k! 5 ST
kDpk~1 2 p!T2k, (12)

where ĈT(k) is the probability of finding k spikes in T cycles.
For an arbitrary discrete-time spike-generating process, if count-

ing is performed so that the window starts on the cycle immediately
after a spike, then the distribution for the number of spikes in a
window of size T, N̂T , is related to the distribution of the kth order
spike intervals, Sk , by:

prob$N̂T , k% 5 prob$Sk . T%, k $ 1. (13)

In other words, the probability that there are fewer than k spikes
in a count window of size T is the same as the probability that the
kth order interval is greater than T. The count distribution and
interval distribution are therefore related by:

ĈT~k! 5 5 O
j51

T Ik~ j! 2 Ik11~ j!, k $ 1,

O
j51

T I1~ j!, k 5 0.
(14)

For a renewal process, the ISIs are independent and identically
distributed with some known probability density function I1(j).
Because any kth order interval of length r can be expressed as r 5
(i51

k ji , where the ji are the intervening ISIs, the renewality condi-

tion implies that the kth order interval distribution is the k-fold
convolution of I1 with itself (Feller, 1957). That is,

Ik~ j! 5 O
r51

j21

Ik21~ j 2 r!I1~r!, k . 1. (15)

For renewal spike trains, we can use Equation 15 to express Ik11

in terms of Ik. Introducing this into Equation 14, and after some
routine algebra, we have:

ĈT~k! 5 O
r5k

T O
j5T11

`

I1~ j 2 r!Ik~r!. (16)

From Equation 15 it can be seen that Ik is completely specified if I1
is known, and hence, from Equation 16 count distributions are also
known. That is, for a renewal process the ISI distribution I1 is
sufficient to completely describe the count distributions.

As an example, we can obtain the distribution of counts for a
binomial spike train (Eq. 12) from the ISI distribution (Eq. 10).
Repeated application of Equation 15 with I1 the geometric density
given by Equation 10 yields the kth order interval distribution given
by Equation 11. Furthermore, inserting Equations 10 and 11 into
Equation 16 yields the binomial distribution given by Equation 12.

For a nonrenewal process, the chief difficulty lies in relating the
ISI distribution I1 to the kth-order interval distributions. That is,
neither the convolution expression given by Equation 15 nor the
expression for count distribution given by Equation 16 are appli-
cable. Therefore, Equation 14 can be evaluated only if Ik for all k $
1, are known. Thus, for a nonrenewal process, the ISI distribution
does not provide information about counts or intervals on multiple
time scales.

APPENDIX B
Measures of variability for renewal processes
Let I1 be the ISI distribution for a renewal process, and let I#1 and
Var(I1) be its mean and variance, respectively. Then, as the kth-
order interval is the sum of k independent random variables, the
mean and variance of Ik are kI#1 and k Var(I1), respectively. Thus,
the coefficient of variation CVI(k) is:

CVI~k! 5
1

Îk

Var~I1!
1/2

I#1

5
1

Îk
CVI~1!. (17)

That is, the coefficient of variation decreases as k21/2. Likewise, the
variance-to-mean ratio FI(k) is:

FI~k! 5 Var~Ik!/I#k 5 Var~I1!/I#1 5 constant. (18)

For the binomial model, it follows from Equation 11 that I#k 5 k/p
and Var(Ik) 5 k(1 2 p)/p 2. Therefore, CVI(k) 5 =(1 2 p)/k and
FI(k) 5 (1 2 p)/p.

For a nonrenewal process, Var(Ik) can be related to Var(I1) and
the correlation coefficients rl by Var(Ik) 5 k Var(I1){1 1
2(l51

k21(1 2 ( l
k
))rl}.

The coefficient of variation and Fano factor expressions for spike
count distributions are more complicated than those for the inter-
vals, with the exception of binomial (and Poisson) processes for
which they are easily calculated. For the binomial spike train, it
follows from Equation 12 that C# T 5 Tp and Var(CT) 5 Tp (1 2 p).
Thus, CVC(T) 5 =(1 2 p)/Tp, and falls as T21/2. The Fano factor
FC(T) 5 1 2 p, and is constant for all T. Any process with FC(T)
smaller than this value will exhibit greater regularity in spike
counts than the binomial process, and conversely, more irregular
processes will have larger values.

For small T, FC(T) for any discrete time process will tend to 1 2
p where p is the probability of firing in the sampling interval. That
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is, for counting times T 3 1, the process is nearly binomial. For a
continuous time process, when the count window Dt3 0 then p3
0. Thus, FC(T)3 1, which is the Fano factor for a Poisson process.
That is, we expect spike counts in small count windows to be as
irregular as a Poisson process. For renewal processes, the Fano
factor for large T asymptotically approaches a constant value that is
related to the coefficient of variation of the ISI by the relation,
FC(T) ' CVI(1)2 (Cox and Lewis, 1966). That is, the variability of
spike counts is attributable to the variability in interspike intervals.
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