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From the earliest drawings of neurons1 to the identification of families 
of voltage-gated ion channels2, a central theme of neuroscience has 
been the marked intrinsic variety of cells. While catalogs of types 
of neurons continue to grow3, the importance of intrinsic diversity 
within neurons of a single type for neuronal coding has been largely 
ignored. Differences in channel expression and morphology4,5 can 
diversify spike outputs, even among cells of a single identified type6. 
Alternatively, spiking properties can be equivalent among neurons 
with channel densities of different proportions6. Intrinsic variability 
therefore seems to have multiple roles in mechanisms of spike genera-
tion. However, the extent to which these individual differences in cells 
are relevant to neural coding is less well understood.

Intrinsic diversity could be critical for neuronal coding, for exam-
ple, by reducing pair-wise spike train correlations and reducing 
redundancy across populations of neurons, perhaps in conjunction 
with connectivity7,8. Such decreases would afford populations of 
highly diverse neurons additional bandwidth with which to code 
for stimuli, as has been suggested by theoretical studies9,10. In noisy 
neural systems, where trial-to-trial variability is large11, the manner 
in which redundancy and bandwidth are balanced remains unex-
plored. At one extreme, biophysical differences may simply be the 
product of the imprecision of biology. For example, mosaics of neu-
ronal properties may only reflect the probabilistic nature of gene 
expression among different cells. Alternatively, this diversity may be 
a functionally important adaptation in which the noise of stochastic 
gene expression is harnessed in the service of neuronal coding. Thus, 
understanding the effects of intrinsic diversity on neural responses 
and neuronal coding is essential for linking the cell biology of  
neurons with their function in information coding in the context 
of neuronal circuits. Heterogeneity in responses can arise from 
numerous sources, including anatomical differences and differ-
ences in inputs. We focused on the mitral cells of the main olfactory 

bulb, where input correlations in mitral cells connected to the same 
glomerulus are high12 and the anatomy is highly stereotypic.

We found that intrinsic biophysical diversity affects neuronal coding 
by reducing correlations in the population code while simultaneously 
increasing the information encoded by the population. The coding capa
city of populations of biophysically heterogeneous cells was twofold higher 
than that of their homogeneous counterparts. This enhancement was 
seen for both random noisy inputs and physiologically relevant stimuli 
modulated by oscillations corresponding to the frequency of sniffing. In 
addition, we found that the spike-triggered average (STA) could be used 
to quantify neuronal diversity. Our data imply that biophysical hetero-
geneity is an important mechanism of robust population coding rather 
than an unavoidable consequence of biology’s imprecision.

RESULTS
Mitral cells have intrinsic biophysical diversity
To understand the role of intrinsic diversity in neuronal coding, we 
made recordings from mitral cells of the mouse main olfactory bulb 
in vitro (Fig. 1a). In the olfactory bulb, groups of ~25 mitral cells 
receive their excitatory input from the same population of several 
thousand olfactory receptor neurons (ORNs) in structures known 
as glomeruli13. Each glomerulus is the convergence point of all ORN 
axons expressing the same odorant receptor that together provide 
highly correlated inputs to mitral cells (Fig. 1a)13,14. Mitral cells 
activated by the same odor in the same animal have different temp
oral responses8,15,16. In most cases, these responses are the result 
of responses from mitral cells connected to different glomeruli8. 
However, highly variable responses have been observed even when 
cells are connected to the same glomerulus17, suggesting that strongly 
correlated inputs only trigger weakly correlated outputs, not unlike 
what has been reported in neocortex7,18. To explore differences in 
mitral cell intrinsic properties, we first injected a constant direct 
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Intrinsic biophysical diversity decorrelates neuronal 
firing while increasing information content
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Although examples of variation and diversity exist throughout the nervous system, their importance remains a source of 
debate. Even neurons of the same molecular type have notable intrinsic differences. Largely unknown, however, is the degree 
to which these differences impair or assist neural coding. We examined the outputs from a single type of neuron, the mitral 
cells of the mouse olfactory bulb, to identical stimuli and found that each cell’s spiking response was dictated by its unique 
biophysical fingerprint. Using this intrinsic heterogeneity, diverse populations were able to code for twofold more information 
than their homogeneous counterparts. In addition, biophysical variability alone reduced pair-wise output spike correlations to 
low levels. Our results indicate that intrinsic neuronal diversity is important for neural coding and is not simply the result of 
biological imprecision.
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current into the mitral cell soma. This stimulus produced marked 
variability in mitral cell output spike patterns (n = 34 cells, 19 animals;  
Fig. 1b,c). This variability was preserved in cells in which apical den-
drites and lateral dendrites were intact, suggesting that spike pattern 
differences were not a result of differences in morphology or of artifacts 
in slicing (n = 8). Analysis of these reconstructed mitral cells revealed 
that they all had both apical and lateral dendrites (eight of eight),  
75% of cells (six of eight) had well ramified apical tufts, and 62.5%  
(five of eight) had multiple obvious lateral dendrites extending 
throughout the bulb slice. The total length of reconstructed dendritic 
processes was 1,860 ± 494 μm (n = 8). Thus, although the cells were 
anatomically similar, they differed markedly in their firing patterns, 
including in the spike after-hyperpolarization (Fig. 1d).

Even neurons firing at similar rates (Fig. 1b,c) fired more or less 
regularly, as measured by the coefficient of variation of their inter-
spike intervals (CVisi, 0.09 and 1.12; Fig. 1b,c). This was typical of 
the variability seen across all of the mitral cells that we recorded (ISI 
coefficient of variation = 0.44 ± 0.33; Fig. 1e) and was indicative of the 
physiological signatures of their intrinsic biophysical differences19,20. 
Furthermore, mitral cells had highly variable input-output functions 
(firing rate to a given direct current input, n = 11 cells; Fig. 1f).

Differential expression of voltage-gated ion channels can lead to dif-
ferences in intrinsic properties6. To characterize this differential channel 
expression, we immunostained mitral cell populations for one subunit of 
the voltage-gated potassium channel Kv1.2 (Fig. 1g). Kv1.2-positive mitral 
cells were right next to cells that were Kv1.2 negative (Fig. 1g), suggesting 
that one source of intrinsic diversity in the mitral cell population is the 
differential expression of the Kv1.2 subunit.

Mitral cell responses to complex stimuli are cell specific
Fixed direct current injection, as used above to identify regular spik-
ing versus bursting mitral cells (Fig. 1b,c), fail to capture the complex 
dynamics of neuronal firing21. To understand the effects of intrinsic 
diversity on neuronal output, we recorded mitral cell responses (in 
ACSF, containing 25 μM d(−)-2-amino-5-phosphonovaleric acid 
(AP5), 10 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 
10 μM bicuculline to block fast synaptic transmission and isolate 
intrinsic properties) to identical rapidly fluctuating currents (filtered 
Gaussian white noise, σ = 40 pA, direct current = 100–400 pA, n = 15 
over multiple trials (30–40 trials); Fig. 2a, Supplementary Analysis 
and Supplementary Fig. 1). As all synaptic transmission was blocked, 
differences in spike output were the result of intrinsic biophysical  

variability. Identical experiments performed without blocking  
synaptic transmission yielded similar results, indicating that these 
differences were also present under different physiological condi-
tions (data not shown).

Identical input noise triggered reliable spike trains in a single 
cell22,23, but the spike trains in different mitral cells varied consider-
ably (Fig. 2a). To classify this output diversity, we carried out principal 
component analysis (Supplementary Fig. 2) on the spike trains. As 
there were no slow covarying elements in the first three principal 
components (Supplementary Fig. 2), each cell’s response reflected a 
differential filtering of the rapidly fluctuating current in the stimu-
lus, rather than slow decorrelation or spike-frequency adaptation. 
Projecting each spike train onto the first three principal components 
(Fig. 2b) showed that, although the across-cell responses were broadly 
distributed, within-cell responses were tightly packed.

To measure the similarities and the differences of spike trains 
within and between mitral cells in this space, we classified each of 
the trials from the different recorded cells to the stimulus using the K 
nearest neighbor algorithm. Using only the first 15 principal compo-
nents (three nearest neighbors, using 60% of data for training), spike 
trains could be correctly classified as originating from a particular 
neuron with 86 ± 2% accuracy (Fig. 2c). Furthermore, the number of 
nearest neighbors (Fig. 2d), ranging from one to ten, did not affect 
classification accuracy (one nearest neighbor = 86.7 ± 2%, ten near-
est neighbors = 85.5 ± 2%, P = 0.07, ANOVA) when 60% of the tri-
als were used, suggesting that the clustering of spike responses was 
tight. Thus, a spike train from a single cell was more similar to the 
other spike trains from that cell than to spike trains from other cells. 
When changing the percentage of training versus testing data, a small 
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Figure 1  Intrinsic diversity of mitral cell populations. (a) Schematic of 
mammalian main olfactory bulb circuitry. ORNs expressing one olfactory 
receptor all send their axons to the same glomerulus. All mitral/tufted cell 
apical dendrites connected to a glomerulus receive inputs that are highly 
correlated. (b,c) Biocytin fills of two representative mitral cells with spike 
responses to a fixed direct current. In both cells, apical dendrites and 
their tufts (green arrow) and lateral dendrites (blue arrow) were intact in 
the slice. (d) Mitral cell spike outputs were also diverse on the basis of 
the shape of the after hyperpolarizations that follow their action potentials 
(color corresponds to traces in b and c). (e) Mitral cells differ widely in 
both firing rates and in the coefficients of variation of their interspike 
intervals (CVisi). (f) Recordings of mitral cells showed wide variation in 
excitability as described by the frequency of action potentials generated by 
constant current stimuli of different amplitudes. (g) Confocal micrographs 
of the olfactory bulb stained for Kv1.2 (green) and Hoechst (blue). An 
overlaid image, Kv1.2-positive cell bodies and mitral cell nuclei, is shown 
on the right. Red arrows highlight cell bodies of Kv1.2-positive neurons 
and their nuclei and white arrows highlight nuclei of mitral cells that did 
not express Kv1.2. Kv1.2-positive and Kv1.2-negative mitral cells are 
interspersed in the same focal plane.
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effect on classification accuracy was observed  
(40% testing data gave 85 ± 3%, training 
accuracy, 80% testing data gave 88.8 ± 3% 
accuracy, P = 0.006, ANOVA; Fig. 2e). Thus, 
the responses of all of the trials in a single 
condition were highly reproducible and clas-
sification accuracy decreased only nominally 
when the number of trials used for training 
was halved. Consequently, spike trains to the identical stimulus  
were reliable across trials in one cell, but specific across all cells.

Intrinsic diversity reduces correlations in spike output
Correlated spiking can emerge as a result of reliable firing among 
populations of cells that are driven by inputs that are highly corre-
lated17. However, intrinsic diversity may reduce pair-wise correlations 
between cells. To explore this question, we calculated the correlations 
of spike trains across all trials in the same cell and between trials in 
different mitral cells to this identical input (Supplementary Fig. 3). 
Spike train correlations across trials recorded from a single cell were 
high, but were much lower between the trials of different cells (within 
cell R2 = 0.17 ± 0.002, between cell R2 = 0.04 ± 0.00, n = 15, P = 3.7 × 
10−10; Fig. 3a). When pair-wise correlations across all trials from all 
cells to the stimulus were compared (n = 589 trials, 30–40 trials per 
condition), the mean was R2 = 0.08 ± 0.09 (1-ms window, Fig. 3b).

Thus, the intrinsic differences between this population of mitral 
cells reduce correlations of mitral cell responses to fluctuating inputs. 
The pair-wise similarity between spike trains was low even when the 
inputs that drove those spikes were perfectly correlated. Low output 
correlations were not exclusively the result of differences in firing rate; 

near-zero correlations were observed even with similar firing rates  
(Fig. 3c). Furthermore, when the precision by which correlation was 
measured was relaxed, pair-wise population correlations were still only 
0.34 ± 0.15 for a 16-ms window (Supplementary Fig. 3). Thus, intrinsic 
diversity between mitral cells alone was sufficient to reduce correlations 
between neural spike trains.

Diversity can be described by analysis of STAs
Rapidly fluctuating stimuli21, in addition to providing an input for 
assessing correlation23, can be used to probe the complex features 
of a cell’s intrinsic dynamics24. To explore this further11,22,23,25, we 
injected a family of rapidly fluctuating currents that differed in their 
variance and direct current offset (σ = 20–80 pA, direct current = 
100–600 pA; Supplementary Fig. 1) into a population of recorded 
mitral cells in which all excitatory and inhibitory synapses were 
blocked (25 μM AP5, 10 μM CNQX, 10 μM bicuculline). In addi-
tion, identical experiments were performed where synaptic activity 
remained and yielded similar results. To characterize the features of 
the stimulus to which each neuron responded, we calculated the aver-
age stimulus waveform preceding all the spikes in that neuron, the 
STA (Supplementary Figs. 4 and 5)24,26,27, for each cell. Differences 

in STAs indicated that different mitral cells 
were filtering different features of the stimu-
lus and the different filters reflected differ-
ences in the biophysical properties of these 
neurons24. The STAs of several example cells 
(Fig. 2a) were highly variable (Fig. 4a), rep-
resentative of the heterogeneity in stimulus 
filters across all of the mitral cells that were 
recorded (n = 35 STAs; Fig. 4b).

To analyze these filters, we carried out 
principal component analysis on the STAs 
(Supplementary Fig. 4), allowing each STA 
to be represented as a linear combination 
of principal components28. The first three 
components (Fig. 4c) accounted for 90% 
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Figure 2  Uniqueness of mitral cell output to 
identical input. (a) Spike rasters of ten trials 
for three mitral cells to an identical fluctuating 
input (black trace). (b) Projection of all spike 
patterns (points) from multiple cells (colors) 
onto a space defined by the first three principal 
components (PC1, PC2 and PC3) calculated 
from all spike trains. (c) Classification accuracy 
of spike trains on the basis of recording identity 
as a function of the number of eigenvectors (λ)  
used for classification. (d) The number of 
nearest neighbors (1, 3, 5 and 10) did not 
affect the classification accuracy. (e) The 
percentage of trials used in the testing and the 
training sets affected the classification accuracy 
only when 80% of spike trains were used in 
training. Error bars represent s.d.
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of the STA variance (Fig. 4d) and their projection into the space 
defined by these components (Fig. 4e) indicated that STAs were 
not uniformly distributed and that diversity was preserved across 
multiple firing rates (Supplementary Figs. 4 and 5). Consequently, 
STA shapes projected onto the space defined by the first three prin-
cipal components allowed us to visualize the distribution of intrinsic 
biophysical variability.

Biophysical diversity predicts information gain
To connect intrinsic diversity (STA) to information coding, we 
evoked spike trains in many neurons at different direct current values  
(n = 15) using a rapidly fluctuating identical stimulus21,23 over mul-
tiple trials (m = 30–70 trials per cell, six representative trials; Fig. 5a 
and Supplementary Fig. 1). This can be seen as being analogous to 
the case in which groups of mitral cells receive highly similar inputs 
from the same population of sensory receptor neurons14. As all mitral 
cells received identical input fluctuations and all synaptic activity was 
blocked, differences in spike output were the result of intrinsic bio-
physical diversity. From these recordings, we generated homogeneous 
(n = 45 populations per network size) and heterogeneous popula-
tions (n = 200 populations per network size) ranging in size from  
two to ten mitral cells to explore the connection between diversity 
and entropy/information in spike output (Fig. 5b and Supplementary 
Fig. 6)9. We generated homogeneous population responses by draw-
ing spike trains from the set of trials recorded in a single neuron 
(Fig. 5b), equivalent to the case in which a stimulus was encoded 
by identical cells receiving the same input. In contrast, heterogene-
ous responses were created by randomly selecting groups of non-
identical neurons from the population of all recorded cells (Fig. 5b). 
Spike trains recorded on individual trials for each of these different 
cells (Fig. 5b) were then drawn randomly to create the heterogene-
ous response (Fig. 5b), analogous to a case in which biophysically 
distinct cells process the same input (N = 2,000 trials per network; 
Supplementary Fig. 7)29. When the number of neurons in the pop-
ulation was small (for example, two cells; Fig. 5c), only small dif-
ferences between the information transmitted by the homogeneous  

population (0.60 ± 0.15 bits per 8-ms bin) and the heterogeneous  
population (0.71 ± 0.12 bits per 8-ms bin) could be identified. However, 
as the population size grew, heterogeneous networks quickly carried 
more information than their homogeneous counterparts (Fig. 5c).  
Gains increased by up to 2.1-fold (Fig. 5c and Supplementary Fig. 7)  
in the largest network examined (ten mitral cells), in which hetero-
geneous populations carried 2.66 ± 0.12 bits per 8 ms, which was 
significantly more than homogeneous populations of the same size 
(1.27 ± 0.07 bits per 8 ms, P < 5 × 10−7, ANOVA).

To determine whether biophysical diversity accounted for the 
increases in information, we related the population’s STA diver-
sity to the information it encodes about the stimulus for each set 
of heterogeneous mitral cells (n = 1,800 different simulated popu-
lations; Fig. 6). We used the STAs of example neurons (Fig. 6a) as 
a measure of that mitral cell’s intrinsic diversity contribution to 
the population (Fig. 6b). From this, pair-wise distances between 
these STAs (Fig. 6c) in the principal component space (Fig. 4) 
could be calculated. As the mitral cell population’s STA diver-
sity increased, the bits of stimulus information relayed by those 
populations continued to increase to 2.60 ± 0.16 bits per 8 ms  
(R2 = 0.89, n = 1,800; Fig. 6d). Thus, the more intrinsically diverse the 
population, the more information that the ensemble of mitral cells 
conveyed (Fig. 6d and Supplementary Figs. 8 and 9).

Diversity increases information during oscillatory inputs
In mammals, inputs to mitral cells are strongly modulated by oscil-
latory drive, corresponding to the animal’s sniffing cycle (1–10 Hz in 
mice), and this periodic sampling of odors is thought to be essential 
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for behavior and the processing of odor information30,31. To deter-
mine whether the gain in information conferred by biophysically 
heterogeneity was present when mitral cells received physiologically 
relevant stimuli, we injected mitral cells with both synaptic barrages 
generated by convolving a random spike train 
with an alpha function and synaptic barrages 
modulated with an underlying 8-Hz oscilla-
tion (n = 11 cells with theta, 23 cells total). 
Spike trains from mitral cells (n = 27–40 spike 
trains per cell; Fig. 7a and Supplementary 
Fig. 10) presented with an identical synaptic 
barrage or a synaptic barrage and an 8-Hz 
current were collected over multiple trials 
in both of these conditions. Again, these two 
conditions could be thought of as the case 
in which populations of mitral cells receive 
highly similar synaptic inputs modulated 
by sniffing from groups of sensory neurons 
expressing the same olfactory receptor pro-
teins. We examined the responses of indi-
vidual mitral cells (Fig. 7b), along with the 

probability of spiking throughout the stimulus of each of cell (Fig. 7c). 
The underlying theta rhythm resulted in locking of spike patterns to 
specific phases of the oscillation32, notably to the rising phase and the 
peak (Fig. 7c). However, when the precise timing of spikes in these 
cells was examined, differences quickly became apparent (Fig. 7d,e). 
Specifically, even mitral cells firing at similar rates (11.5 ± 1.9, 8.6 ± 2.1 
and 13.7 ± 1 Hz) showed considerable heterogeneity with spike times 
for each neuron staggered throughout various phases of the oscil-
lation (Fig. 7d). When the STAs of these different mitral cells were 
calculated by injecting a noisy stimulus (Fig. 7f), they were indeed 
different. Thus the STA, in addition to reflecting each neuron’s unique 
biophysical fingerprint, also reflects the diversity of that neuron’s spike 
timing across various phases of an input driven by strong theta oscil-
latory activity.

To determine the extent to which these differences in spike timing  
across theta cycles allowed mitral cells to code for information,  
we created model populations of homogeneous and heterogene-
ous neurons as before (Fig. 6a) from cells that all received the same 
synaptic input and the same synaptic input modulated by a theta 
oscillation. For synaptic inputs, eight cell heterogeneous populations  
(n = 100) carried 1.67 ± 0.13 bits per 8 ms, significantly more (P = 1.3 ×  
10−30, ANOVA) than their eight cell homogeneous network (n = 11) 
counterparts, which carried only 0.91 ± 0.3 bits per 8 ms). Eight cell 
heterogeneous networks (n = 100) that received synaptic inputs that 
rode on top of an underlying 8-Hz oscillation carried 24.5 ± 2.5 bits 
per sniff, significantly more (P = 5.1 × 10−24, ANOVA) than the infor-
mation carried by eight cell homogenous networks (12.6 ± 5.8 bits per 
sniff, n = 11). Taken together, these data suggest that biophysically 
heterogeneous populations of mitral cells can code for up to 1.9-fold 
more information per sniff cycle than biophysically homogeneous 
populations of mitral cells. Furthermore, the degree of biophysical  
heterogeneity as measured by STA diversity correlated with the gains 
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in information across different types of physiologically relevant stimuli  
(Supplementary Fig. 10). Therefore, the coding capacity gains associ-
ated with diverse populations of mitral cells appeared to be preserved 
across a host of conditions, ranging from noisy stimuli to synaptic 
inputs modulated by a strong 8-Hz oscillation. In sum, the compu-
tational advantages conferred by intrinsic biophysical heterogeneity 
are a general feature of neural coding across a range of physiologically 
relevant stimuli.

DISCUSSION
Intrinsic diversity’s role in correlation and coding
Although neurons have long been known to be diverse in their anato
mical and physiological properties3,33, our results are, to the best of 
our knowledge, the first to demonstrate the importance of intrinsic 
biophysical diversity in a population of neurons (mitral cells of the 
olfactory bulb) that are believed to be highly homogeneous and have 
been shown to receive highly correlated inputs14. A neuron’s response 
to incoming stimuli is shaped by the voltage-gated ion channels 
expressed in that cell34,35. Different combinations of these channels 
may generate functional differences or may result in a population of 
neurons that are physiologically similar despite being molecularly 
different6,36. Consequently, the diversity that emerges from individual 
differences in gene expression37 in some cases appears to be nullified 
by the combinatorial expression of different channels in that cell. In 
such instances, intrinsic diversity is titrated to produce equivalent 
output responses6. In other cases, populations of inhibitory3 and exci-
tatory33,38 neurons in both the mammalian neocortex and inhibi-
tory neurons in the Drosophila olfactory system39 exhibit a notable 
intrinsic diversity. In these regions and populations of neurons, dif-
ferences in the expression of ion channels and morphology result in 
the marked heterogeneity of the intrinsic properties of those cells39 
and the responses are therefore diverse even when similar inputs are 
delivered33. Although a number of mechanisms have been proposed 
to account for the origin and extent of these intrinsic differences40, 
we found that differences in intrinsic biophysical heterogeneity can 
be important neural coding.

One aspect of coding in which heterogeneity may be important is 
in correlated activity among populations of cells41. Correlations in 
output spiking can occur as a result of cells receiving highly correlated 
inputs12, but these output correlations are often substantially less than 
the input correlations17 as a result of a number of factors8, including 
active decorrelation resulting from network connections7,42. Although 
the degree and origin17 of this correlated firing remains controver-
sial7,18, our results indicate that intrinsic diversity alone is sufficient to 
erode output correlations even when inputs are shared and when only 
a single population of neurons is considered. Precise correlations have 
been identified as being crucial in a number of systems, including the 
olfactory bulb43. In the antenna lobe, the insect analog of the mam-
malian olfactory system, spiking activity is synchronized by 20-Hz 
oscillations44 and desynchronization of this activity degrades the odor 
representation and impairs discrimination45. Our results also suggest 
that intrinsic biophysical diversity among mitral cells may reduce the 
degree to which firing is correlated even when incoming ORN excita-
tory inputs are very similar and gated by oscillatory drive. In mam-
mals, where respiratory drive and sniffing produce strong oscillatory 
input in the theta frequency, diverse cells may exploit their intrinsic 
differences to spread spikes across various phases of the underlying 
respiratory cycle, improving the information coding capacity of the 
population, as we found here.

Diversity of intrinsic properties may also influence the extent to 
which mitral cells can be synchronized by aperiodic inhibition46. 

Reciprocal interactions between mitral cells and the inhibitory popula-
tion of granule cells to which they are connected may be an additional  
source of diversity that can dynamically42 alter the correlational struc-
ture of the spike outputs47. In this respect, important relationships 
could exist between the dynamics of individually heterogeneous cells 
and the networks in which they are embedded.

Among the many approaches taken to examine questions of neural  
computation, biophysical models of single neurons and statisti-
cal analysis of populations of neurons have both been powerful. 
Dynamical systems approaches have provided insight into how single 
neurons and networks respond to stimuli11. Simultaneously, the statis-
tical characterization of neuronal responses and neuronal variability 
has allowed neural computation to be described in terms of the func-
tions being performed21,29. Largely absent, however, is a framework 
that relates diversity in the parameters for spike generation in a single 
neuron with the coding of a population of neurons comprised of these 
diverse individual cells. Building on our previous work24 showing how 
the STA, a concept in neural coding, is related to the phase resetting 
curve (PRC), an idea from neuronal dynamics, we investigated how 
diversity at the single cell STA level (and, by extension, the single cell 
PRC) contributes to efficient population coding. Our data establish 
a bridge linking these two frameworks, connecting the dynamical 
systems perspective (PRC→STA) of a single neuron with the statis-
tical perspective of a population code (STA→bits). Thus, popula-
tion coding may not simply be the product of more neurons or more 
connections, but instead depends on the contributions of intrinsic 
biophysical diversity to tie these elements together.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Animal procedures. All procedures were carried out in accordance with 
the guidelines for the care and use of animals at Carnegie Mellon University 
(Institutional Animal Care and Use Committee of Carnegie Mellon University) 
and as previously described48,49. Briefly, C57Bl/6 mice between postnatal days 
11 and 19 (P11 and P19) were deeply anesthetized with isoflurane and then 
decapitated. Brains were removed and placed in ice-cold Ringer’s solution  
(125 mM NaCl, 25 mM glucose, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4,  
1 mM MgCl2 and 2.5 mM CaCl2). We made 300-μm-thick coronal sections from 
the main olfactory bulb using a vibratome (VT1000S, Leica). After cutting, slices 
were incubated in Ringer’s solution of (125 mM NaCl, 25 mM glucose, 2.5 mM 
KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 1 mM MgCl2 and 2.5 mM CaCl2) at  
37 °C for 30 min before recordings were made.

For immunohistochemistry, mouse tissue was extracted at P20. Briefly, mice 
were deeply anesthetized and then killed by perfusion with a solution of 4% 
paraformaldahyde (wt/vol) and 30% sucrose (wt/vol) in 0.1 mM phosphate 
buffer. We made 50-μm sagittal sections of the main olfactory bulb for subse-
quent processing.

Electrophysiology. Whole-cell recordings were made using patch pipettes 
filled with an internal buffer (130 mM potassium gluconate, 10 mM HEPES,  
2 mM MgCl2, 2 mM MgATP, 2 mM Na2ATP, 0.3 mM GTP, 4 mM NaCl and, in 
some cases, 10–50 μM Alexa 488/594 Hydrazide or 1% biocytin, wt/vol) using a 
Multiclamp 700A amplifier (Molecular Devices) and an ITC-18 data acquisition 
board (Instrutech). Mitral cells were identified under infrared differential inter-
ference contrast optics on the basis of their laminar position in the olfactory bulb 
and their morphology. Cell identity was confirmed with fluorescent intracellular 
fills that revealed clear apical dendrites that ramified into a single glomerulus. 
Current-clamp recordings were performed using whole-cell patch pipettes. All 
experiments were done at 35 °C in Ringer’s solution (125 mM NaCl, 25 mM 
glucose, 2.5 mM KCl, 25 mM NaHCO3, 1.25 mM NaH2PO4, 1 mM MgCl2 and 
2.5 mM CaCl2) with excitatory (25 μM AP5 and 10 μM CNQX) and inhibitory 
(10 μM bicuculline) synaptic activity blocked. Additional experiments performed 
without synaptic blockers were done with Ringer’s solution as described above 
except with a MgCl2 concentration of 0.2 mM. For all recordings, a 25-pA or  
50-pA hyperpolarizing pulse was injected before stimuli were delivered to 
measure input resistance and membrane time constant, allowing us to track the 
stability of recordings over multiple trials. When multiple stimuli were presented 
to mitral cells, trials were interleaved to prevent systematic differences in neural 
responses that may have arisen over the entire recoding epoch.

Immunohistochemistry. We used a monoclonal antibody to a subunit of the 
voltage-gated K+ channel Kv1.2 to characterize differences in channel expres-
sion. The monoclonal antibody to Kv1.2 was developed by and obtained from 
the University of California Davis/US National Institutes of Health NeuroMab 
Facility. The primary antibody was used at a dilution of 1:1,000 for 1 h. We used an 
Alexa-Fluor 488–conjugated (Invitrogen) donkey secondary antibody to mouse 
at a 1:600 dilution for 1 h. For all sections, an additional Hoechst stain to identify 
cell nuclei was used. Sections were then imaged using a confocal microscope by 
scanning multiple regions of interest in both the bulb and the mitral cell layer.

Stimulus. Noise traces were generated as previous described23. Briefly, a 2.5-s 
white noise current was convolved with an alpha function having a 3-ms rise time 
(Supplementary Fig. 1). The alpha function was selected as it reflected the time 
scale for optimal reliability of mitral cell spiking to a fluctuating input23. Identical 
input was delivered to all of the cells, causing differences in spiking responses; 

including different rates of firing in each cell and different times at which individual  
spikes occurred even when firing rates were similar (Supplementary Fig. 1).  
Representative examples of responses to different noise stimuli for another group 
of cells (Supplementary Fig. 1) illustrated that the response diversity identified 
(firing rates, spike times, ISI of spikes, etc) were present over various types of 
stimuli, suggesting that the variability in neuronal responses reflected underlying 
intrinsic differences across a host of stimuli rather than differences highlighted 
by selecting a single stimulus.

The variance of the noise used was between 5% and 40% of the direct cur-
rent (100–800 pA, σ = 20–80 pA) offset for each cell, with the majority of cells 
receiving 10–20% offset (Supplementary Fig. 1). The variance of the noise was 
selected as previously described23,24 to allow for appropriate estimation of the 
STA. Specifically, the noise values chosen induced reliable firing in neurons with-
out large input fluctuations. The input fluctuation values chosen were sufficiently 
small that there was poor correlation between the σ of the input noise and the 
degree of reliability (R = 0.17) across a fourfold range (5% to 20%) of current 
(Supplementary Fig. 1). Only when the variance was substantially large did 
stimulus σ result in effects on cell reliability.

K nearest neighbor analysis. The K nearest neighbor approach was used to clas-
sify the 589 spike trains from 15 conditions in eight cells. The same input stimulus 
was given to all cells with different direct current offsets to induce firing over 
multiple trials (n = 30–40). For computational efficiency, analysis was performed 
in the space of the first 15 principal components and because classification accu-
racy did not change for principal components greater than ten. The original data 
was then broken up into testing and training sets. The testing sets established the 
location of known responses in the principal component space and the training 
sets were probed with respect to these known responses. The Euclidian distance 
of the unknown response to all known responses was then calculated and the  
n nearest neighbors were used to determine which cell and condition the 
unknown spike response belonged to. This process of generating testing and 
training sets was repeated 20 times, with each repeat reflecting a different random 
population of testing and training to ensure that the classification accuracy was 
not a result of artifacts of selecting a single testing/training population.

Information calculation. To generate population responses for our entropy 
calculations to an identical stimulus, we selected a random group of mitral cells 
from all of the neurons that received the identical input stimulus. Each of these 
different populations was considered to be a single diverse mitral cell popu-
lation. When homogeneous populations were made, spikes drawn at random 
from a single recorded neurons was assigned for all the cells in the population. 
When homogeneous populations were generated, random sampling was done 
with replacement.

Spike trains were then binned into non-overlapping bins of various sizes. If 
one or more spikes occurred in a bin, then a value of 1 was recorded in that bin. 
If no spikes occurred in the bin, then a value of 0 was placed in this bin. In bin 
sizes as large as 12 ms, no examples of bins containing two or more spikes could 
be found, ensuring that at these bin sizes, the binary strings of 1s and 0s captured 
the entire spike train. In 16-ms bins, 2.8% of the bins had more than one spike; 
therefore only time bins of up to 12 ms were considered to ensure that no relevant 
information was lost in our entropy calculations as a result of doublet spikes.

48.	Kapoor, V. & Urban, N.N. Glomerulus-specific, long-latency activity in the olfactory 
bulb granule cell network. J. Neurosci. 26, 11709–11719 (2006).

49.	Urban, N.N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and 
interglomerular lateral inhibition between mouse olfactory bulb mitral cells.  
J. Physiol. (Lond.) 542, 355–367 (2002).
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