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We estimated the frequency-intensity (f-I) curves of P-unit electrore-
ceptors using 4-Hz random amplitude modulations (RAMs) and using
the covariance method (50-Hz RAMs). Both methods showed that P
units are linear encoders of stimulus amplitude with additive noise;
the gain of the f-I curve was, on average, 0.32 and 2.38
spikes-s~'-uV ! for the low- and high-frequency cutoffs, respec-
tively. There were two sources of apparent noise in the encoding
process: the first was the variability of baseline P-unit discharge and
the second was the variation of receptor discharge due to variability of
the stimulus slope independent of its intensity. The covariance method
showed that a linear combination of eigenvectors representing the
time-weighted stimulus intensity (E1) and its derivative (E2) could
account for, on average, 92% of the total response variability; E1 by
itself accounted for 76% of the variability. The low gain of the
low-frequency f-I curve implies that detection of small (1 wV) signals
would require integration over many receptors (~1,200) and time
(200 ms); even then, signals that elicit behavioral responses could not
be detected using rate coding with the estimated gain and noise levels.
Weak signals at the limit of behavioral thresholds could be detected if
the animal were able to extract E1 from the population of responding
P units; we propose a tentative mechanism for this operation although
there is no evidence as to whether it is actually implemented in the
nervous system of these fish.

INTRODUCTION

Sensory signals are typically encoded by the patterns of
spikes in a population of afferent fibers. Discovering the neural
code for a sensory system requires both specifying a map
between external signals and the resulting spike trains and
demonstrating that downstream neural circuits can interpret or
decode this mapping and therefore direct behavioral output
(Perkel and Bullock 1968). The original suggestion by Lord
Adrian (Adrian 1932) that the intensity of a stimulus is linearly
encoded by the spike rate over a fairly long time window (rate
coding) has dominated this field. For slowly changing signals,
this code can be simply estimated by presenting constant
stimuli of varying intensity and counting the spikes emitted
over many seconds; this results in a simple spike frequency-
intensity (f-I) curve that summarizes the putative code. The
advantage of this encoding scheme is that decoding merely
requires temporal summation of input over a time window set
by the synaptic and postsynaptic membrane time constants.
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However, this method of estimating stimulus encoding fails for
dynamic signals and for neurons with time-dependent conduc-
tances (e.g., adapting currents). More sophisticated methods
such as the use of the spike-triggered stimulus average (STA)
to estimate the reverse correlation of signal and spike train
response have also been employed to estimate the linear
encoding of signals (Chacron et al. 2005a; Metzner et al. 1998;
Wessel et al. 1996). However, there is typically no obvious
decoding mechanism implied by these techniques.

In this paper, we analyze encoding in the electrosensory
system of the weakly electric fish, Apteronotus leptorhynchus.
These fish emit a continuous quasi-sinusoidal electric organ
discharge (EOD); the species EOD frequency ranges from
~600 to 1,000 Hz, and the amplitude varies with fish size, but
the EOD of an individual fish has nearly constant amplitude
and frequency (Moortgat et al. 1998). The electric field induced
by the EOD is sensed by specialized cutaneous tuberous
electroreceptors. The most abundant tuberous receptor is the P
unit, and it discharges in a probabilistic manner to the upward
phase of the baseline EOD oscillation. An important parameter
characterizing P units is their P value, defined as the probabil-
ity of P unit spiking per EOD cycle and estimated as the ratio
of P-unit frequency to EOD frequency; P values typically
range from ~0.10 to 0.50 (P value = 0.10-0.60) (Bastian
1981a; Xu et al. 1994, 1996). The amplitude of the EOD can be
modulated by both the presence of nearby objects (electrolo-
cation) or the EOD of conspecifics (electrocommunication)
(Bastian 1981a; Benda et al. 2005, 2006; Nelson 2005; Nelson
et al. 1997); electrolocation induces low-frequency amplitude
modulations (AMs) (typically <20 Hz) (Bastian 1981a; Nelson
and Maclver 1999) while electrocommunication AMs can
exceed 200 Hz (Bastian et al. 2001; Benda et al. 2006). These
AMs of the baseline EOD are the dynamic sensory signals for
the electrosensory system and cause the P-unit firing rate to
vary proportionally. P units have been thoroughly studied and
modeled by many investigators (Bastian 1981a; Benda and
Herz 2003; Benda et al. 2005; Chacron et al. 2001, 2005a;
Kreiman et al. 2000; Ludtke and Nelson 2006; Nelson et al.
1997; Ratnam and Nelson 2000; Wessel et al. 1996; Xu et al.
1996); P-units are rapidly adapting (Benda et al. 2005; Xu et al.
1996) and are typically studied using sinusoidal (SAMs) or
random AMs (RAMs). The emerging consensus from these
studies is that, over the natural range of AM intensities and
frequencies, P units are linear encoders and can predict =80%
of the AM. However, the reverse correlation and coherence
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methods often used in these studies again do not point to
obvious decoding strategies.

In this paper, we estimate the f-I curves of P units using
techniques recently developed by Brenner et al. (2000). Classic
f-I curves were constructed using low-frequency noise; these
results lead to a simple model of linear encoding with additive
noise. The noise appeared to be due to both the well docu-
mented variability of baseline P-unit discharge and the sensi-
tivity of P units to the stimulus slope as well as its intensity.
Although it is easy to envision the decoding of this response,
our calculations show that the estimated noise levels would
preclude the model from detecting weak electrosensory sig-
nals. High-frequency noise signals and the covariance method
were also used to construct f-I curves. We found that P units
responded to a linear combination of time-weighted averages
of the signal intensity and its slope; these two variables
accounted for almost all the P-unit response variability and the
first feature (intensity) contributes most to the response. We
conclude that the apparent noise in the response to the signal’s
intensity (classic f-I curve) is due, in part, to the variation of the
signal slope. We suggest a mechanism such that, if the fish
were able to decompose the P-unit response into its intensity
and slope components, then it could then detect the very weak
signals to which it is behaviorally responsive.

METHODS

This study used data from single-unit nerve recordings from adult
gymnotiform weakly electric fish Apteronotus leptorhynchus (10-14
cm). Animals were housed in groups of 3—10 in 150-1 tanks, and the
temperature were maintained at ~28°C. A dose of 100 ppm MS-222
(tricaine methanosulfonate, Sigma, St Louis, MO) anesthetized the
fish before surgical and experimental procedures; the fish were then
immobilized with an intramuscular injection of pancuronium bromide
(Sigma) and placed in a water tank (46.5 X 41 X 18.5 cm) kept at
28°C and respirated with a constant flow of oxygenated water. The
water resistivity of the water was typically set at ~4.5 k() cm to match
that of the fish’s home tank. All experimental protocols were approved
by the University of Ottawa Animal Care Committee.

Experimental procedures were as previously reported (Benda et al.
2005). The posterior branch of the anterior lateral line ganglion
(innervating trunk electroreceptors) was exposed and glass micropi-
pettes (90—115 M()) advanced through the nerve with a piezoelectric
microdrive (Inchworm IW-711, Burleigh, Fishers, NY). Action po-
tentials were recorded (Axoprobe 1A; Axon Instruments, Union City,
CA), band-pass filtered (0.3-7 kHz: PC1; TDT, Alachua, FL), and
notch filtered at the fish’s EOD frequency (Ultra-Q Pro; Behringer,
Willich, Germany).

Two vertical carbon rods (11 cm long, 8 mm diam) recorded the
unperturbed EOD between the head and tail of the fish. Stimuli (see
following text) were attenuated (PA4; TDT, Alachua, FL), isolated
(Model 2002; A-M Systems, Carlsborg, WA) and, for global stimu-
lation, delivered by two stimulation electrodes (30-cm-long, 8-mm-
diam carbon rods) parallel to its longitudinal axis and placed 15 cm on
either side of the fish. Local stimulation by 20-Hz sine waves was
delivered by two stimulation electrodes (0.005-in diam, 99.95% tung-
sten wire, California Fine Wire, Grover Beach, CA) 4 mm apart,
parallel to the fish’s longitudinal axis, and placed within 1 cm of the
fish’s surface; a 20% contrast was used. These local stimulation
electrodes had their position adjusted to produce a maximal response
from the receptor and we assumed that this identified its location.
During both global and local stimulation, two chloridized silver wires
insulated up to their tips with nail polish and 4 mm apart recorded the
field gradient adjacent to the animals skin. These silver wires were
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oriented perpendicular to the global stimulation electrodes at the site
of maximal response to local stimulation and thus measured the
stimulus delivered to the recorded P-unit. The EOD and field gradient
were amplified and low-pass filtered (5 kHz; 2015F, Intronix, Bolton,
Ontario).

After the P-unit location had been identified (with 20-Hz sine wave
stimulation), we used RAM stimuli to characterize the relationship
between the stimulus intensity and P-unit discharge rate (f-I relation).
The stimulus was generated by multiplying the fish’s EOD (MT3;
TDT, Alachua, FL) on a cycle-by-cycle basis with the RAM stimulus;
its contrast was controlled via a programmable attenuator.

P-type units were identified on the basis of their phase locking to
the EOD, skipping response to the baseline EOD, and phase locking
to direct stimulation. Once a receptor was tested for phase locking to
a global 20-Hz AM stimulus, the same 20-Hz AM stimulus was
delivered locally to find the receptor on the surface of the fish. By
adjusting the position of these local stimulation electrodes along the
head-tail and dorsal-ventral axes of the fish, it was possible to find the
location producing a maximal response from the recorded P unit. The
local electrodes used to measure the field gradient at the receptor pore
were oriented perpendicular to the global stimulation electrodes but,
because the fish’s body curves appreciably at its dorsal aspect, were
not necessarily perpendicular to the skin. Because the effective stim-
ulus for an electroreceptor is the current flow across it (perpendicular
to the skin) (Nelson et al. 1997), a correction factor was applied based
on measurements of the body curvature; this produced the final
estimate of the effective intensity of the stimulus driving the P-unit
(average correction: 0.84 = 0.17 X measured amplitude).

Action potentials, the EOD, the field gradient, and the attenuated
stimulus were digitized at 20 kHz with a 12-bit Multi-IO-board
(PCI-MIO-16E-4; National Instruments, Austin, TX) on an Intel
Pentium IV 1.8 GHz Linux PC. Spike and EOD detection, stimulus
generation and attenuation, and preanalysis of the data were per-
formed on-line during the experiment with our custom software
(On-line Electrophysiology Laboratory, created by J. Benda). All data
analysis was performed with MATLAB (The Mathworks, Natick,
MA).

Estimating the P-unit f-I function

The classic method for constructing f-I curves calculates spike rates
in response to step changes in stimulus intensity. The rapid adaptation
of P-units to steady-state changes in EOD (Bastian 1981a; Benda et al.
2005; Xu et al. 1996) amplitude precludes this method. Instead we
computed f-I curves using two methods adapted from Brenner et al.
(2000) using double the cutoff frequencies found during late (~2 Hz)
and early (~25 Hz) phases of prey detection (Nelson and Maclver
1999): a Gaussian RAM with a low-frequency cutoff of 4 Hz and a
contrast of 5, 10, and 15%. Gaussian RAMs with a 50-Hz cutoff
frequency were presented for 180 s at 10% contrast. The former
stimulus protocol was repeatedly delivered for 10 s with 2-s rests
(frozen noise, 15-100 presentations), and analyzed using counting
windows (32 or 64 ms) to generate the spiking rate versus intensity
relationship. The latter protocol, analyzed using the covariance
method (Brenner et al. 2000), utilized a cutoff frequency that did not
exceed the Nyquist frequency for any P unit in our sample (minimum
P-unit mean firing rate can be ~100 Hz), which evoked only one or
a small number of spikes over the time scale of the fastest fluctuations
in the stimulus; further, a 10% contrast stimuli tests for the full coding
range up to saturation of the response. Preliminary experiments had
shown that the covariance method works best under these conditions
and is not optimal for the 4-Hz cut-off stimulus. P-units, because of
their high discharge rate, responded throughout the low-frequency
stimulus (Fig. 1), and this resulted in gradually decreasing eigenvalues
instead of two dominant ones (see following text); in this case the
covariance method is not informative.
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FIG. 1. A: P value distribution and log-
normal fit. The w and o values are —1.42
and 0.46, respectively, with a mean of
0.26 = 0.11. B: distribution of P-unit firing
rates distribution and lognormal fit. The w
and o values 5.23 and 0.44, respectively,
with a mean of 199 = 81Hz. C: Fano factor
curves of a subset of P units. The 2 vertical
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lines indicate the 32- and 200-ms time
points. The arrows identify the P values for
2 representative units that demonstrate the
lower variance of the high-frequency P units.
D: correlation coefficient of the P value vs.
Fano factor for varying counting windows,
plotted against the corresponding counting
windows. With time intervals <50 ms, there
is a very strong inverse correlation between
P value and the Fano factor (P < 0.005).
Significant negative correlations persist for
counting windows =250 ms.
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Data analysis

P-UNIT BASELINE ACTIVITY. We routinely computed the interspike
interval (ISI) histogram, spike train serial correlations and the Fano
factor as previously described (Chacron et al. 2001; Ratnam and
Nelson 2000). The Fano factor is the variance to mean ratio of the
spike count as a function of the counting interval; we used intervals
ranging from 2 to 1,200 ms (absolute time) or 2—1,200 EOD cycles.

LOW-FREQUENCY STIMULATION. A stimulus with a maximum fre-
quency of 4 Hz could, in principle, be sampled at 8 Hz; in practice,
such sampling produced noisy f-I curves. We present analysis using
32-ms sampling bins; sampling at 64 ms produced similar results (data
not shown), but we use the faster sampling so that our results might
be applied to the higher-frequency AMs generated during initial prey
detection in these fish (>10 Hz) (Nelson and Maclver 1999). In
addition, when given a step change in amplitude, the P-unit spike train
is mostly adapted by 30 ms and, in its adapted state, responds linearly
to the full range of intensities (Benda et al. 2005).

The corrected field gradient and the spike train response were
therefore partitioned into 32-ms bins, overlapping by 16 ms; a 3-ms
delay was used between the start of the stimulus window and the start
of the spike count window to account for latency/conduction delays
(1.6-5.6 ms) (Bastian 1981b). The mean value of the stimulus in each
bin was calculated and the mean EOD amplitude (without stimulation)
subtracted from this value to give the mean stimulus change from the
baseline EOD amplitude; we then computed the relative stimulus as
the percent change of stimulus intensity from the baseline EOD
amplitude and designate this as %Al This was done to permit
comparisons of P-unit responses across fish with differing EOD
amplitudes. The mean spike count (unstimulated) or rate was also
subtracted from the spike count per window to give the change in
count (rate) from baseline; again we also computed the relative spike
count or rate by dividing the change in spike count by the baseline
count (rate).

Thus we could compute either the absolute or relative change in the
spike count of a P-unit in response to a relative change in stimulus

200 300 400 500

Interval Size (ms)

intensity. These methods gave different results in some cases and
which method is preferable depends on the putative decoding mech-
anism performed by downstream neurons (see following text).

The spike counts were subsequently analyzed in three ways: the
spike count mean and variance were computed across all repeated
stimulus presentations for the same 32-ms window; in this case, both
the mean stimulus intensity and the stimulus slope are constant for
each bin, but the sample size is small—this is termed vertical analysis
(vertical divisions of Fig. 2A); the spike count mean and variance were
computed between amplitude increments of 1 wV across the entire
stimulus and the responses to the same mean intensities were grouped
together. In this case, the mean intensity within each window remains
constant but its slope varies; the sample size is greatly increased. This
method is termed horizontal analysis and is based on the assumption
that P-units code solely for intensity (Fig. 24); last, we used the
second method but separately analyzed the spike counts occurring on
up and down slopes of the signal; this is described as the slope-
horizontal analysis. (Fig. 2A).

The spike count (absolute or relative) was graphed versus the
relative intensity change, where the middle 75% of all data points for
the 5% contrast stimulus were used to calculate the slope of the line
of best fit and the residuals computed. Any residual more than five
times the SD outside of the middle 75% data set was excluded in the
determination of the coding range of the receptor. The SDs from the
differing analyses were compared via ANOVA. The root mean square
error (RMSE) was calculated using the line of best fit for all methods
of analysis.

HIGH-FREQUENCY STIMULATION. The covariance method, as out-
lined by de Ruyter van Steveninck (de Ruyter van Steveninck and
Bialek 1988) and used to characterize motion-sensitive neurons in the
fly (Brenner et al. 2000), retinal ganglion cells (Fairhall et al. 2006),
and brain stem auditory neurons (Slee et al. 2005), was used for this
analyses. We first computed the reverse correlation, or spike triggered
average (STA), for the 20 ms (1-ms bins) preceding each spike;
preliminary analysis showed that the STA declines to baseline by 20
ms and that longer time windows do not change the subsequent
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FIG. 2. Overview of stimulation and analysis protocol. A: 1-s sample of the
global low-frequency Gaussian noise stimulus [0- to 4-Hz random amplitude
modulation (RAM), 10% contrast]. Vertical lines demonstrate the discretiza-
tion into 32-ms time bins; the spike counts down each vertical bin served as the
basis for the Vertical analysis. The dashed gray horizontal lines are one slice
through the signal; the sections sampled have equal mean intensities but their
slopes can vary considerably (e.g., compare ii with iv). Combining all samples
(i-vi) served as the basis for the horizontal analysis, whereas separating
positively (i, iii, v) and negatively (ii, iv, vi) slope regions served as the basis
for sloped-horizontal analysis. B: raster plot of a P-unit discharge in response
to each stimulus presentation. Spikes are counted in 32-ms bins (vertical) for
each presentation. C: mean time-dependent firing rate estimated from the raster
plot (32-ms bins) overlapped at 2-ms intervals. The firing rate faithfully
follows this relatively strong stimulus (10% contrast); we note that these fish
are capable of detecting contrasts of <1% (Nelson and Maclver 1997). Gray
band represents 1 SD; the increased variability seen at the stimulus peak is due
to the near saturation of the response for this unit.

analysis (data not shown). In addition, an equal number of randomly
sampled 20-ms vectors were used to compute the mean stimulus
independent of the occurrence of spikes. From these mean vectors, we
computed the covariance matrix of the STA (C spike in the terminol-
ogy of Brenner et al. 2000) and the covariance matrix of the random
sampling of the stimulus (C prior in the terminology of Brenner et al.
2000). Subtracting these matrices gives the covariance matrix associ-
ated with the stimulus induced spikes (AC in the terminology of
Brenner et al. 2000).

We computed the eigenvalues and eigenvectors from the AC
matrix. The relative contribution of each eigenvector was assessed by
dividing the absolute value of the eigenvalue by the sum of absolute
value of all the eigenvalues. Because the two largest eigenvalues (E1
and E2) accounted for 90-95% of the total variance, we confined
further analysis to the associated eigenvectors; detailed analysis was
carried out only for the eigenvector associated with the largest
eigenvalue as discussed in the following text.

We then computed the dot product of each 20-ms stimulus vector
preceding a spike onto El; this projection of the stimulus onto El
estimates their similarity (S). This can be computed relative to the
maximal EOD amplitude (this measure is used in the figures); it can
also be computed as an absolute value (uV) because it is merely the
E1 weighted mean of the signal. The same computation was carried
out for the randomly sampling of 20-ms stimulus vectors. Both sets of
projection values were then binned producing a probability densities
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defined as the P(S|spike), for prespike stimulus projection values, and
P(S) for the random sampling, both of which are related to the relative
intensity of the stimulus. Bayes theorem states

P(spike|S) _ P(S|spike)
P(spike) ~ P(S)

(1)

where P(spike) is defined as the overall probability of spike discharge
per EOD cycle (this is taken during stimulation and is nearly identical
to the receptor’s P value) and P(spike|S) is proportional to a normal-
ized rate as a function of the degree of similarity (S) to El (as
described in Brenner et al. 2000; Slee et al. 2005); we also converted
the conditional probability, P(spike|S), to a firing rate by multiplying
it with the EOD frequency. P(S|spike) is readily calculated from the
probability density of S (the projection of spike triggered stimuli onto
El). P(S) was calculated from the probability density of the randomly
sampled stimuli. An f-I type relation was obtained by plotting the
normalized firing rate versus S1 (Fig. 9B). We then carried out the
calculations in the preceding text for 20-s segments of the stimulus
and computed the mean f-I curve; we then estimated the noise of this
f-1 curve by computing the SD of the individual f-I curves from the
mean. Similar calculations were performed for the projection of the
stimuli onto E2; the resulting f-I curves are generally linear with small
slopes (data not shown) as expected from the small values of the E2
eigenvalue (see following text). Because we are primarily interested in
the response of P-units to stimulus intensity, these results are not
further discussed.

RESULTS

We recorded P-unit activity from a total of 54 fish. EOD
frequency is highly correlated with the sex of the fish: males
typically have EOD frequencies of 800—1,000 Hz, whereas
females are between 600 and 800 Hz (Zakon et al. 2002).
Because the EOD frequencies of the fish ranged from 630 to
970 Hz with approximately equal numbers more than and
<800 Hz (data not shown), we assume that we were sampling
from both sexes. No difference in P-unit properties were noted
in this population as a function of EOD frequency.

We recorded a total of 310 units for baseline activity (36
fish) with a mean baseline spiking frequency of 199 = 81 Hz
(range of 64—470 Hz); the fish’s mean EOD frequency was
782 *x 90 Hz. This translates to a mean P value of 0.26 = 0.11
(range of 0.06—0.60). Both the P value and baseline frequency
distribution were well fit by a log-normal distribution with
and o values of —1.42 and 0.46, respectively (P values) and
with u and o values 5.23 and 0.44, respectively (firing rate;
Fig. 1, A and B); the modes of the distributions were 0.22 (P
value) and 180 Hz (the gamma distribution did not produce
good fits, data not shown). The majority of P values were
between 0.15 and 0.35 (76%).

It is clear that the P value distribution is not Gaussian;
although the excellent fit by a lognormal distribution might be
coincidental, it is also possible that there is a deeper functional
cause. A P-unit is composed of 25—40 receptor cells innervated
by a single axon; each cell makes =16 synaptic contacts onto
the P-unit axon (Bennett 1989). First, we assume that the
number of synaptic sites of one receptor that release transmitter
during one EOD cycle is a random variable drawn from some
(unknown) probability distribution. We also assume that the
electroreceptor cells are independent: that is, the number of
active synaptic sites at one receptor is uncorrelated with the
number of active sites from another receptor for the same EOD
cycle. The potential (postsynaptic) in the P unit afferent fiber at
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the time of a single EOD is also a random variable, and it
determines the P value of the unit. If the postsynaptic potential
were proportional to the product of the number of active sites
per receptor taken across all receptors, then the resulting P
value distribution would be lognormal; if the postsynaptic
potential were proportional to the sum of active sites, then a
Gaussian distribution of P values would be expected. Detailed
biophysical analysis of the tuberous electroreceptors will be
required to test these speculative ideas.

Baseline activity

ISI distributions, as well as phase locking to the EOD, were
similar to previously reported results (Nelson et al. 1997;
Ratnam and Nelson 2000; Xu et al. 1996). We recorded mainly
nonbursty P units (71%, similar to:Xu et al. 1996), and because
analysis did not reveal any significant differences between
bursting and nonbursting afferents, we pooled the results. The
first-order serial correlation coefficient (SCC) of the P units
was negative with values similar to those previously reported
(Ratnam and Nelson 2000); the value of the SCC was weakly
negatively correlated to P value (R* = —0.21, P < 0.03).

As previously described (Ratnam and Nelson 2000), P-unit
Fano factor curves (variance/mean of the spike count as a
function of counting time) decreased to a minimum (0.063 =
0.053) occurring between 56 and 1,000 ms (mean of 520 * 277
ms) before increasing (Fig. 1C). Neither the counting window
for the Fano factor minimum nor its value were related to the
afferent’s P value (not significant, P > 0.10). At short intervals
(<50 ms), P value was strongly inversely related to the Fano
factor, and significant negative correlations persisted to 250 ms
(Fig. 1D).

P unit response to low-frequency noise (f. = 4 Hz)

Low-frequency signals were presented to 77 P units (11
fish). The mean spike count per 32 ms appears to faithfully
track the stimulus intensity of the 0- to 4-Hz RAM stimulus
(comparing Fig. 2, A with C). Plotting either absolute or
relative mean change in spike count versus relative intensity
revealed a central linear range, representing the effective cod-
ing range of the receptor, bounded by sections of zero-slope
and/or irregular spiking indicative of saturation due to very low
or high intensities (Fig. 3A).

Linear fits were initially performed to the central region
(using 75% of the data surrounding the baseline spike count)
and then extrapolated outward. Very good linear fits were
achieved for all P units (R2 = 0.94 £ 0.14, P < 0.005). The
residuals (Fig. 3B) calculated from the linear fit were then used
to define the lower and upper limits for linear coding for each
P unit: residuals outside of the central region and larger than
four times the central residual SD were excluded. The linear
coding range of these neurons is independent of P value and
stimulus contrast (the minimum and maximum intensities are
—17 = 7.5 and 17 = 8.8%, respectively) of the baseline EOD
amplitude; spiking is silenced at the low intensities and satu-
rated at approximately double the baseline firing rate. The SD
did not change significantly over the entire coding range (Figs.
3A and 6A). This coding range is sufficient to encompass the
full intensity range of low-frequency signals expected during
electrolocation (Babineau et al. 2006; Chen et al. 2005).
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the central region (thick solid line) was used to compute P-unit gain (slope) and

range. The coding range of this unit is indicated by the thin vertical lines. B:
residuals of the fit when extended over the entire stimulus range.

Gain is positively related with P value when absolute spike
counts are used (range: 0.035-0.447 spike-32 ms™'+/%AI ",
avg. gain = 0.197 spike:32 ms - %Al ', R* = 0.55 where
P < 0.01; Fig. 4A). Following the convention in this field, we
convert the rate to spike/s (Fig. 4A; range: 1.1-14.0
spikes '+ %Al ',[r] mean gain = 6.16 spike's” '-%AI ")
This suggests that if target pyramidal cells in the electrosensory
lateral line lobe (ELL) can detect absolute changes (%1
spike/s) in the P-unit spike count, then high P value receptors
will be most sensitive to small changes in intensity. As noted
in METHODS, percent changes in intensity were used to compare
between fish with varying EOD amplitudes. We repeated these
calculations for absolute (wV) changes in intensity: for a
1-uwV/cm change (averaged over 32 ms), we expect (averaged
across all P values) an extra 0.32 = 0.17 spike/s. This value is
lower than the ~1 extra spike/s per uV/cm given in earlier
reports (Bastian 1981a; Nelson et al. 1997). It is possible that
by extrapolating the gain-frequency relationship down from
minimum experimental intensities of 63 wV/cm (Bastian
1981a) and 10 wV/cm (Nelson et al. 1997), gain at 1 wV/cm is
overestimated. The discrepancy might also, in part, be due to
differences in methodology: Bastian used SAMs (as opposed to
RAMs) with large increases in intensity and extrapolated down
to microvolt levels. Nelson based his estimates on the use of
sinusoidal amplitude modulations and P-unit models that were
in turn calibrated by Bastian’s earlier data. This disparity
strongly affects the number of downstream neurons required to
detect small changes in input; we further discuss this discrep-
ancy after describing the results of our covariance analysis in
the following text (also see DISCUSSION).

The relative spike count per relative intensity (i.e., relative
gain) has no relationship to the baseline spiking frequency or P
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value (range: 0.76-—8.01%spike/%AlI; Fig. 4B). A relative
measure would be appropriate if downstream neurons normal-
ized the P-unit baseline input by, for example, synaptic depres-
sion (Abbott et al. 1997). Because this possibility is entirely
speculative, we follow previous authors (Bastian 1981a; Nel-
son et al. 1997) and present results solely as absolute spike
count and spike rate.

P-units show strong adaptation to sustained or slowly chang-
ing input (Benda et al. 2005; Nelson et al. 1997; Xu et al.
1996), implying that the extent of adaptation might be different
on the positive and negative slope of the stimulus waveform
and contribute to the variability of the P-unit response. We
therefore computed the f-I curves independently for the posi-
tive and negative slopes of the stimulus (sloped-horizontal
analysis, Fig. 5). The coding range and the defined maximum
and minimum firing frequencies were the same regardless of
the sign of the stimulus slope and were not significantly
different from those values computed for the entire stimulus
and across various stimulus contrasts.

The gain of the f-I curves was the same for horizontal and
sloped-horizontal curve analyses. However, the curve gener-
ated from the positive slope sections of the stimulus was
leftward displaced in comparison with the curve from the
negative slope sections while the negative slope sections were
rightward displaced (8.5 = 4.5% intensity difference; black
bar, Fig. 5); the linear fit for the horizontal analysis was located
symmetrically between these curves (data not shown). This
result is consistent with the dynamics of P-unit adaptation
because the firing rate is low at the onset of the positive slope,
reducing adaptation and therefore causing a shift of the neu-
ron’s f-I curve to lower intensities (Benda and Herz 2003).
This result implies that a linear rate code estimate of signal
intensity will be biased if the gain for the horizontal analysis is
solely used in its computation (Fig. 3A).

As observed for the curves generated from the horizontal
analysis, the SD (noise) for the sloped-horizontal curves re-
mained constant over the entire linear coding range. However,
the noise for the horizontal curve is greater, over the entire
linear coding range, than that of the sloped-horizontal F-I curve
(Fig. 6, A and C). Under the assumption that the SD reflects
P-unit noise, this implies that noise levels will be reduced if a
central decoder could separate P-unit spikes emitted during the
positive versus negative slopes of the stimulus. This idea was
further investigated by computing the spike count variability
around the mean of the baseline discharge in response to
varying levels of contrast. This spike count distribution (for all
conditions) can be well approximated as Gaussian (Fig. 6B),

and we have previously noted that the spontaneous variability
might represent noise because it occurs independent of stimu-
lation (Chacron et al. 2001). The SD of the spike count
computed vertically (no variation in stimulus slope) was not
significantly different from that of baseline variability [0.71 *
0.18 spike/32 ms (22.16 = 5.5 spike/s) vs. 0.68 = 0.18
spike/32 ms (21.33 = 5.5 spike/s), Fig. 6C].

In contrast, the horizontally computed variance was signif-
icantly higher and increased with the contrast (as previously
reported by Wessel et al. 1996): at 5% contrast, horizontal
noise [0.91 * 0.33 spike/32 ms (28.40 = 10.4 spike/s), P <
0.001] is 40% greater than the vertical noise and increases by
40% for each 5% increase in contrast. Furthermore, the con-
trast for the total stimulus was, at any contrast, greater than that
computed for positive and negative slope: the sloped-horizon-
tal noise [0.74 = 0.21 spike/32 ms (23.03 £ 6.5 spike/s)] is
only 18% greater than the vertical noise and increases 18% for
each 5% increase in contrast. Similar results were obtained when
absolute or relative spike counts were used (data not shown).

Because an increase in contrast will increase the variability
in stimulus slope, this data suggests that at least a portion of the
“noise” may be due to the P unit responding to variations in
stimulus slope. By separating the stimulus into increasing and
decreasing changes in amplitude, the variability is reduced
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FIG. 5. f-I curves for positive (black line) and negative (gray line) stimulus
slopes with error bars (SD) and best fit lines (solid and dashed, respectively).
-1 gain is the same for both slopes but there is an offset by a spike count bias;
the f-I curve for the entire data set shown in Fig. 3 would lie precisely in the
middle of these curves. The intensity range (ends of best fit lines) are equal and
independent of baseline P value.
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FIG. 6. A: SD of the spike count (within
32ms) over the coding range for counts pooled
over the entire stimulus (green) vs. separate
counts for the positive (blue) and negative
(red) slopes of the stimulus. The SD becomes
more variable outside the coding range
(dashed gray vertical lines) because of either
erratic discharge or saturation effects. Note
that the SD of the spike counts for both the
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compared with horizontally computed noise. In fact, in the
limit of the very low contrasts that occur during prey detection
(<2%) (Nelson and Maclver 1999), additive Gaussian noise is
equal to the variance of the baseline spike count [even at 5%
contrast, vertical noise: 0.71 = 0.18 spike/32 ms (22.16 = 5.5
spike/s) and sloped noise: 0.74 = 0.21 spike/32 ms (23.03 =
6.5 spike/s) were not significantly different from baseline
variability (0.68 = 0.18 spike/32 ms (21.33 = 5.5 spike/s)];
variability of baseline discharge is therefore a valid approxi-
mation of the noise in rate coding models of the P-unit
response to weak low-frequency signals.

The effect of eliminating the bias and reducing the variance
can be assessed from the accuracy of stimulus reconstructions
based on the computed linear f-I curves. When reconstructing
the stimulus using the 5% contrast gain (to avoid the saturating
regions), the mean square error between the original stimulus
and its reconstruction is reduced more than threefold when
positive/negative slope are taken into account (absolute spike
count: total RMSE = 9.37 = 474 uV; sloped RMSE =
2.86 = 0.80 wV); similar results were obtained when using the
relative spike count (data not shown).

F. = 50-Hz stimulus-response characteristics

The 0- to 50-Hz signals were presented to 45 P-units (7 fish).
Our analysis suggested that the P units were responding to both
the intensity and slope of the low-frequency RAM signals; we
therefore turned to a recently developed method that can
explicitly decompose the spiking response of a neuron to a
linear combination of time-dependent vectors. We used the
covariance method of de Ruyter van Steveninck et al. (1988)
and Brenner et al. (2000) with high-frequency RAMs (50-Hz
cutoff) as stimuli. We first computed the STA; this vector is
positive just preceding a spike and rapidly drops to negative
value before settling to O (baseline EOD amplitude) by 20 ms
(Fig. 7A), as previously reported in earlier studies of a related

spike count distribution of stimulated dis-
charge for 32 ms (mean subtracted) of a typ-
ical P unit averaged across all bins (vertical
analysis, 5% contrast). Black line is the Gauss-
ian fit to this data. C: SD of the absolute spike
count within 32 ms for baseline discharge
(black), vertical (v, light blue), horizontal (*,
green), positive stimulus slope (+, blue) and
negative stimulus slope (—, red) for contrasts
ranging from 5 to 15%. Significance is based
on comparisons with the vertical SD within a
given contrast, with 1 star = P < 0.05 and 2
stars = P < 0.01 (ANOVA). The vertical SD
is not significantly different from that of the
spontaneous discharge at all contrasts. The
results are similar for the relative spike count.

10% Contrast 15% contrast

electric fish (Wessel et al. 1996). The shape of the STA and its
spectrum are independent of EOD frequency and P value (data
not shown). We also used the STA (corrected for the autocor-
relation/power spectrum of the spike train) (Gabbiani 1996;
Wessel et al. 1996) to evaluate the error of linear signal
reconstruction; we found coding fraction values (range cf. =
0.640 — 0.925, mean cf. = 0.798 £ 0.089) consistent with
earlier studies on a related electric fish (Wessel et al. 1996).

The eigenvector (E1), corresponding to the largest eigen-
value of the spike-triggered covariance matrix, was very sim-
ilar to the STA (Fig. 7A). The STA, and therefore E1, repre-
sents the time-weighted intensity—positive for ~6 ms preced-
ing a spike and negative back to ~20 ms— of the stimulus that
is likely to evoke P-unit spiking and accounts for most of the
variance of the response (65—85%) for all P values. The second
eigenvector (E2), corresponding to the second highest eigen-
value, resembles the derivative of the STA and is therefore a
measure of the local slope or change of the stimulus (Fig. 7A).

The relative contribution of the covariance matrix eigenval-
ues to the total variance drops rapidly and, as reported in other
sensory systems (Brenner et al. 2000; Slee et al. 2005), the first
two eigenvalues account for, on average, 92% percent of the
total variance (85-95%; Fig. 7B). Similar results were obtained
when 0- to 100-Hz RAMs were used (data not shown).

The relative contribution of the first and second eigenvalue
varied systematically with P value so that higher P value
receptors tend to have a stronger El contribution, whereas
those with low P values have a larger contribution from the
second eigenvector (though still less than E1, and E2 drops to
almost 0 at higher P values; R* = 0.52, P < 0.02, Fig. 8). This
suggests that low P value receptors are better suited to signal
changes of intensity, whereas high P value receptors can code
almost entirely for the first eigenvector (intensity). Because E1
is closest to the “intensity” variable of f-I curves, our subse-
quent analysis is focused on the E1 vector. The contribution of
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FIG. 7. A: The spike-triggered average (STA, black) is nearly identical to
the 1st eigenvector (E1, blue); the 2nd eigenvector (E2, green) resembles the
derivative of the E1 (red). The STA decays to 0 by 20 ms and no change in E1
or E2 was seen when STA was calculated for longer prespike intervals. B:
cumulative percent strength of the eigenvalues. The Ist and 2nd eigenvalues

account for ~87% of the variance in the response for this P unit.

El to the variance (mean = 76%) is similar to the stimulus-
response coherence of P units (60—80% for frequencies =50 Hz)
(Chacron et al. 2005a). These are linear methods and both rely on
the cross-correlation of stimulus and evoked spike train. Although
subsequent data analysis is different (covariance matrix decom-
position versus Fourier transform to the frequency domain) it is
reassuring that they nonetheless give comparable results.

Projecting the prespike vectors onto E1 computes its simi-
larity to E1 and thus to the time-weighted intensity; we desig-
nate this value as the normalized relative intensity (S). Esti-
mating the probability of a spike given the occurrence of El
provides a measure of the spike rate. These quantities are
connected via Bayes theorem and, as previously described
(Brenner et al. 2000), were used to compute a normalized f-I
curve by plotting the normalized firing rate versus the normal-
ized relative intensity (see METHODS). To estimate the noise
remaining in this derived f-I curve, we computed the f-I
relation for 20-s segments of the recordings and calculated the
SD of the curve from the variations of individual curves with
respect to the mean curve.

Plotting S1 versus the normalized relative intensity gener-
ates a linear relationship (Fig. 9). This linear region is bounded
by regions of saturation or highly variable spiking similar to
the results for the f, = 4-Hz stimulus, defined by the largest
region where the mean normalized spike count exceeds the
noise. The normalized relative intensity coding range has

GUSSIN, BENDA, AND MALER

average minimum and maximum values of —17.99 = 10.7 and
18.85 * 10.6% similar to those for 4-Hz stimulus. As previ-
ously described for f-I curves derived from 4-Hz stimuli, the P
unit is silenced at the lowest S values (when the signal is most
dissimilar to El) and is approximately double the baseline
firing rate at the upper end of the coding range. The maximum
normalized rate therefore increases with baseline frequency
(R*> = 0.65, P < 0.005). Neither the normalized relative
intensity (S) range, nor the normalized gain (range: 2.84-13.02
spikes '+ %Al ', avg. 5.76 + 3.04 spikes - %Al ') were
related to the P-unit baseline frequency. Further, both intensity
range and normalized gain are similar to the 4-Hz gain data,
suggesting that the Brenner et al. method produces f-I curves
comparable to those calculated with low-frequency RAMs and
the counting window method.

We therefore attempted to calculate the absolute gain of this f-I
curve: the increase in spike count to a 1-pwV/cm increase in
stimulus intensity from the S projection values. A 1-wV change in
intensity causes a 2.38 = 1.09 spike*s '-wV ! change in firing
rate or a 7.3-fold increase over the 4-Hz gain. Earlier studies have
also shown that gain increases with frequency (Bastian 1981a) but
estimate a slightly lower (~5- to 6-fold) increase in going from 4
to 50 Hz (Chacron et al. 2005a; Nelson et al. 1997).

Benda et al. (2005) computed the f-I curves at both the onset
of step changes in EOD amplitude (f,) and after adaptation (f.,).
Both f., and f;, are linear with slopes of 0.32 spike*s '-uV ™'
(this paper: 0.32 spike/s/uV) and 1.97 Hz/uV (this paper: 2.38
spike+s '+ uwV 1), respectively (these were computed from the
data published in Benda et al. 2005) giving a sixfold increase.
Our low-frequency (4 Hz) signals are similar to the f,, condi-
tion with respect to the state of adaptation of the P-units;
similarly, our 50-Hz stimuli are similar to the f;, condition. It is
therefore not surprising that the Benda et al. estimates are also
very similar to those calculated for our low- and high-fre-
quency stimuli, although again we have estimated slightly
higher gain for the 50-Hz RAMs. Our low estimates for mean
low-frequency gain might therefore be more accurate than
previously reported values. However, all estimates of the
relative frequency dependence of gain are in approximate
agreement. Both the method employed in this paper and that of
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range, defined as the region between saturation and when the SD is larger than
the firing rate. C: residuals from the linear fit.

Benda et al. (2005) showed a large variability in the gain of
individual P units. It is therefore also possible that the P-unit
population can fractionate the large intensity range of elec-
trosensory signals; although this might, in principle, improve
coding for both strong and weak signals, it would also mean
that a decoder might not be able to utilize simple averaging
over the entire population. We do not therefore consider this
more complicated possibility in the following text.

The SD of the normalized firing rate increases with the value
of § (R2 = 0.49, P < 0.001), ranging from 15 to 65% of the
normalized firing rate. This is likely due to undersampling—
there are few samples for high values of S that makes the
values of P(S) very small and variable; because P(S) is used in
the denominator (Eg. I), this variability becomes magnified.
For small natural electrolocation signals (within 2% of baseline
EOD amplitude) (Nelson and Maclver 1999) appropriate to the
detection of prey items, the SD is 22.37 = 4.04 spike/s. This
value is nearly identical to the SD of the baseline spike count
(over 32 ms), suggesting that noise due to baseline variability
of P-unit discharge is the final limit for rate coding in the
electrosensory system.

DISCUSSION

The coding of time varying signals by P-unit electrorecep-
tors of high-frequency wave type electric fish has been the
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subject of numerous investigations (Bastian 1981a; Benda et
al. 2005, 2006; Chacron et al. 2001, 2005a; Kreiman et al.
2000; Ludtke and Nelson 2006; Nelson et al. 1997; Ratnam
and Nelson 2000; Wessel et al. 1996; Xu et al. 1996). Although
different types of analysis have been used, the overall conclu-
sion is that P -units are good linear encoders over a wide
frequency range and that their gain increases with frequency.
In Eigenmannia, calculation of the optimal STA was used to
compute the percentage of the signal variance captured by the
P-unit discharge (coding fraction) and coding fractions =0.80
have been reported (Wessel et al. 1996). In A. leptorhynchus,
coherence has been used to demonstrate that linear encoding by
P units can capture ~70% of the signal variability over a wide
frequency range (Chacron et al. 2005a); further, Chacron
(2006) compared stimulus-response to response-response co-
herence to conclude that little additional information could be
extracted by a nonlinear filter.

We have used a more traditional approach, the construction
of f-I curves, to confirm that P units are linear encoders;
further, the variance of the spike count response was indepen-
dent of the stimulus intensity, suggesting that an additive noise
model is suitable. The advantage of this approach is that it can
be immediately linked to a simple putative decoding mecha-
nism: pyramidal cell targets can integrate the numerous P-unit
inputs over a time window appropriate to the maximal signal
frequency. For the sensory input expected during the fish’s
prey capture behavior (Nelson and Maclver 1999), integration
times of 25-200 ms would be appropriate. Because the re-
sponse of P units is statistically independent for both baseline
and low-frequency input (Benda et al. 2006; Chacron et al.
2005a), the input noise will scale as the square root of the
number of P units converging onto a pyramidal cell (see
following text).

f-1 curves are often constructed using constant inputs; we
have used the Brenner et al. (2000) method for slowly varying
input appropriate to the frequencies expected in the final phases
of prey capture (4-Hz cutoff frequency). We find that the
variance and bias of the response are highly dependent on
variations in the slope of the signal. This is not surprising
because the P unit’s high-pass filter response with a cutoff
frequency at 1 Hz as described by Nelson et al. (1997) makes
them sensitive to the slope of the stimulus in addition to the
stimulus intensity. A lower bound on the variance of the P-unit
spike count is set by the variance of the baseline discharge
(Chacron et al. 2001) and depends on the length of the counting
window (Fig. 1) (Nelson et al. 1997). For weak perturbations
(<5% contrast as expected for prey) (Nelson and Maclver
1999), the spike count variance approaches this lower bound
only if computed separately for responses to the positive and
negative slopes of the signal. Separating the response to pos-
itive and negative slopes also eliminates a small bias in the
response and, together with the reduced variability, leads to far
better stimulus estimation. Although separating the stimulus
into regions of positive and negative slope is a nonlinear
operation, it is performed automatically by the circuitry of the
ELL; ELL pyramidal cells can be divided into two major
classes—basilar and nonbasilar pyramidal cells (Maler 1979;
Maler et al. 1981; Saunders and Bastian 1984). Basilar py-
ramidal cells (E cells) respond on the stimulus upstroke while
nonbasilar pyramidal cells (I cells) respond on the downstroke
(Heiligenberg and Partridge 1981).
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Weak signal detection

Behavioral experiments have demonstrated that A. lepto-
rhynchus can detect signals <1 wV and perhaps as low as 0.2
wV (Bastian 1981a; Knudsen 1974; Nelson and Maclver
1999); to assess how well a simple linear rate coding P-unit
model performed, we assessed its ability to discriminate 1-uV
changes in stimulus intensity. We used the discriminant (d' =
IR, — R,|/SD), where R, , are the spike count (SC) at 0 and 1
nV, respectively, and SD the SD of the spike count (Dayan and
Abbott 2001) as a ratio measure of neuronal sensitivity to
inherent noise. Using the mean 4-Hz horizontal gain, 1 uV
produces a mean change of 0.32 = (.17 spike/s, and the mean
sloped horizontal SD is 23.03 = 6.5 spike/s. By calculating the
ASC/SD ratio for each neuron individually, the average ratio is
0.0108 = 0.0213. Because P units are independent (Benda et
al. 2006; Chacron et al. 2005a), the SD will decrease with the
square root of the number of neurons; therefore a fish needs
~10,700 P units to accurately detect 1 wV, a number greater
than the number of tuberous receptors on one side of the body
(7,000-8,000) (Carr et al. 1982).

These fish can take =200 ms to scan past a prey item, and
previous research has assumed that this is the integration time
for detection (Ratnam and Nelson 2000). Because our stimulus
was a 4-Hz RAM, we cannot directly estimate d’ for such long
stimuli. We assume, for the weak perturbations used, that both
the spike count and its SD would scale with the counting time
window in the same way as for baseline activity (as per the
Fano factor plot in Fig. 1). In this case, the spike count would
increase sixfold, whereas the SD would double when the
window went from 32 to 200 ms. This would result in a
threefold increase in d’ and, consequently a ninefold decrease
in the number of neurons to ~1,190. This level of convergence
does in fact occur in the lateral segment of the ELL (Maler,
unpublished observations). However, although the simple f-I
curve might explain the detection of a 1-uV change, it cannot
explain detection levels of ~0.2 uV.

The statistical structure of the P-unit spike train is highly
constrained by adaptation that decays over many EOD cycles
(Chacron et al. 2001; Ratnam and Nelson 2000). Recent studies
(Goense and Ratnam 2003; Kreiman et al. 2000) have demon-
strated that single extra spikes inserted into a P-unit spike train
might be readily detected with few false alarms. If the decoder
used by these authors could be scaled up to a large population
of P units, then the system sensitivity might be sufficient to
detect <1-uV signals; it is not clear whether simple averaging
would work, however, because it would require the “extra”
spikes be added to all P units at roughly the same time, and it
is therefore not clear how such a population decoder would
operate. An additional source of information for detecting prey
items might be ampullary input but even this might not be
sufficient (Maclver et al. 2001). A recent paper (Ludtke and
Nelson 2006) has suggested that an optimal estimator operating
over the electroreceptor population could use P-unit ISI corre-
lations to greatly improve detection of weak signals; this
information is eliminated when rate coding f-I curves are used.
The requirement for this method to work was the estimation of
conditional probabilities by the dynamics of short term plas-
ticity of P-unit synapses; there is, as yet, no experimental
verification of this interesting possibility.

GUSSIN, BENDA, AND MALER

Our results from the covariance analysis of the P-unit re-
sponse to high-frequency stimuli (cutoff frequency: 50 Hz)
suggest another potential mechanism by which the electrosen-
sory system might detect such weak signals. If the electrosen-
sory decoder could extract the first eigenvector from a P-unit
spike train response, then it would encode a 1-wV increase
with, on average, an extra ~2-3 spike/s with a SD of ~22
spike/s. This reduces the number of P units needed to detect
1-uV fluctuations around baseline EOD amplitude to only
~200 neurons (calculated for each unit and then averaged
across units). In this case, even the detection of 0.2 wV would
be possible for the lateral segment of the ELL because con-
vergence ratios of 1,000 are seen in this map (Maler, unpub-
lished data).

Note that the high-frequency stimuli necessary for the co-
variance method probe the P-unit input-output relation in a
different frequency band than the low-frequency stimuli used
for constructing f-I curves. As a consequence, these two
complementary methods reveal signal transmission properties
due to different mechanisms. Nelson et al. (1997) characterized
the gain of the P-unit’s transfer function with two high-pass
filters. The first filter had a cut-off frequency at ~25 Hz. This
filter is due to rapid spike frequency adaptation as described in
Benda et al. (2005), and this filter gives rise to the E1 and E2
components obtained from the covariance analysis of the spike
response to high-frequency stimuli. The second filer had a
cutoff frequency of ~1 Hz, and it is this filter that causes the
f-I curve computed from the response to the low-frequency
stimuli to vary with the slope of the stimulus.

The covariance analysis we performed on low level electro-
receptor responses is similar to previous studies of low level
filtering by visual (Brenner et al. 2000) and auditory (Slee et al.
2005) neurons and reaches remarkably similar conclusions; a
recent study has also reported similar results for a subset of
retinal ganglion cells (Fairhall et al. 2006). First, there are two
dominant filters (eigenvectors): El is a smoothing filter (for
velocity or intensity) operating over a short time range and
resembling the STA; E2 is approximately the time derivative of
the first eigenvector and therefore responds to rapid changes of
the stimulus. Second, parsing the input with these filters re-
duces the response variability and/or increases the information
transmitted. This is intuitively clear since, as already noted by
Brenner et al., much of the “noise” in standard f-I curves comes
from the fact that many sensory neurons respond to both the
intensity (velocity in their case) of a signal and the change of
intensity (acceleration in their case). These stimulus attributes
are confounded in classic f-I curves. Therefore low level
sensory processing would be far more efficient if downstream
decoders could do an eigenvector decomposition of their input.
Earlier studies using the covariance method did not address the
nature of such putative decoders.

In the case of the electrosensory system, we propose a
tentative decoding scheme. P units terminate in the ELL on a
number of target neurons including deep and superficial py-
ramidal cells (PC cells, both E and I types). The deep PC cells
respond in a tonic manner to the input signal over a wide range
of frequencies (they are receptor-like) (Bastian and Courtright
1991; Bastian et al. 2002; Chacron 2006; Chacron et al.
2005a,b). In contrast, superficial PC cells respond in a phasic
manner to the stimulus onset (Bastian and Courtright 1991)
presumably because of inhibitory inputs lacking in deep PC
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cells (Bastian et al. 2002; Maler and Mugnaini 1994). We
propose that superficial PC cells respond to the derivative of
the stimulus, whereas deep PCs respond to both the time
weighted amplitude and its change. Further, we propose that
midbrain neurons downstream of ELL (torus semicircularis,
TS) that receive input from both deep and superficial PC cells
(Bastian et al. 2004) might subtract the superficial PC cell
response from that of the deep PC cell; if the response of the
deep PC cell represents E1+E2 and the superficial PC cell E2
alone, then this operation would recover El. Although this
proposal is speculative, future recording in TS should be able
to confirm or refute it.

There are two constraints on this scenario. First for very-
low-frequency input (<2 Hz), both the STA and E1 become
“time-smeared” due to the multiple P-unit spikes per time scale
of the signal (data not shown) thus invalidating the covariance
method; in this case, the gain is reduced because of adaptation,
and the long detection times used (200 ms) encourage a rate
coding approach. Second, for very-high-frequency stimuli due
to electrocommunication signals, P-units synchronize (Benda
et al. 2006) and averaging over P units may no longer be
effective; further, the low-pass nature of I cells (Chacron 2006;
Chacron et al. 2005b) means that separation by stimulus slope
is no longer possible. Thus for high-frequency or transient
electrocommunication signals, entirely different temporal cod-
ing strategies might be operative (Benda et al. 2006). Given
these constraints and following the studies of prey capture by
a closely related electric fish by Nelson and colleagues (Nelson
and Maclver 1999), we therefore propose the following plau-
sible sensory coding strategy. Apteronotus will scan for prey at
velocities (>10 cm/s) producing stimulus bandwidths ~20-30
Hz; stimulus intensities at the moment of detection are often
weak, <1 wV for prey >2 cm away (Babineau et al. 2006;
Bastian 1981a; Chen et al. 2005; Nelson and Maclver 1999).
For these frequencies, there is minimal synchronization of P
units, and we propose that detecting such weak signals requires
estimating E1 over a large number of receptors (lateral segment
of ELL) and a short period of time (<50 ms). As the fish
approaches the prey, its velocity decreases (<1 cm/s), and the
stimulus bandwidth accordingly decreases to <2 Hz. However,
the fish is also much closer to the prey (<1 cm); given the rapid
drop off of stimulus intensity with distance, this implies much
stronger signals (>10 wV). At this point, the eigenvector
decomposition no longer works because the signal’s frequency
is too low. However, the fish, by separating the signals into
positive and negative slope (via E and I PC cells), can use
simple integration of P-unit input, i.e., the f.. or, equivalently,
the 4-Hz f-I curve, to estimate the stimulus strength. For such
strong, slow signals there can be averaging over a much longer
time window (~200 ms), and there need not be extensive
spatial averaging (~100 P units would be sufficient to detect
10 wV), and PC cells in the different ELL segments might then
provide the spatially high resolution estimate of the prey’s
exact 3-D location (Lewis and Maler 2001).

Conclusions

First, P units can be simply modeled as independent linear
rate coders with additive noise. The amount of this noise can be
estimated from the variability of baseline P-unit discharge. P
units respond to the rate of change (slope) of signals as well as
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their intensity; the slope dependent changes in firing, mostly
those associated with the rising versus falling slopes, are
considered as noise sources in this simple model. A nonlinear
operation is therefore required to improve the rate coder: the
response to up- versus downstrokes of the signal must be
separated by the decoder. This separation is an automatic
consequence of the ELL circuitry because E and I cells encode
the up- and downstrokes, respectively. For the relatively strong
(>5 nV) low-frequency signals that occur during the late
phases of prey capture (fish moving at <2 cm/s and prey within
<1 cm), this encoding model is adequate. Further, decoding in
this case might simply be done by target (pyramidal) cell
temporal integration (averaging) of the synaptic input from a
moderate number of receptors.

Second, this model is not adequate for the temporal band-
width of signals present when the fish first detect prey (0->20
Hz and <1 wV). Because the f-I curve is one dimensional, the
response of the P units to the strongly varying stimulus slope
becomes an additional noise source and this overwhelms the
increased gain of the receptors at higher frequencies. In this
case, the fish might perform an eigenvector decomposition so
as to estimate the signal intensity independent of its slope; this
method will permit the detection of such weak signals because,
again, a biologically reasonable convergence of receptors onto
pyramidal cells is adequate. There is no evidence for such
computation although we have proposed a biologically plausi-
ble scheme.

Another biologically plausible, and not mutually exclusive,
mechanism was recently proposed (Ludtke and Nelson 2006).
Instead of treating the baseline P-unit spike train variability as
noise, this method makes use of the statistical structure of the
spike train and uses the conditional probabilities of spike
discharge for very sensitive encoding of stimulus intensity. The
authors suggest short-term plasticity of P-unit synapses onto
pyramidal cells as a biologically plausible mechanism for
estimating conditional probabilities. Again there is no evidence
that such a computation is performed by the electrosensory
system. More detailed physiological analyses of ELL and TS
responses to prey signals will be required to test these hypoth-
eses and potentially validate these sophisticated statistical
methods as realistic approaches to weak signal detection by
biological neural networks.

Third, electrocommunication signals can be high-frequency
(>30 Hz) or transient signals. Although rate coding by P units
might still contribute to encoding such signals (Benda et al.
2005), it is likely that temporal encoding by spike synchroni-
zation plays a far more important role in this case (Benda et al.
2006).

Fourth, P values have a lognormal distribution with the
majority of units with probabilities between 0.16 and 0.3. The
coding properties of P units vary as a function of their P value.
Higher P value units have lower variance than those with low
P values for counting windows relevant for electrolocation
(<250 ms); this is especially prominent for short counting
windows (<50 ms). Higher P values units have higher gain
than those with lower P values (absolute spike counts only).
The higher P value units have a stronger El contribution
(nearly 100%) from E1 and thus code well for the time-
weighted intensity; lower value P units are better at coding for
rapid changes in input (E2). The higher gain and lower vari-
ability of the high P value units would make them very
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effective in detecting weak prey signals. Target neurons in
ELL might therefore improve their ability to detect prey if they
could selectively sample P units with higher P values, either by
selective anatomical connections or by dynamic synapses;
there is no evidence that this form of optimization occurs.

P units terminate on numerous diverse pyramidal cell types
in the ELL. Further, these fish are often found in foraging
groups and may therefore have to simultaneously detect a wide
range of environmental and communication signal frequencies.
It is therefore conceivable that multiple encoding strategies are
utilized by P units (e.g., both rate, ISI, and population temporal
coding) and that different pyramidal cell classes differentially
decode restricted codes contained within the population re-
sponse: e.g., some pyramidal cells might simply integrate their
P-unit input over a long time window and thus act as decoders
of a rate code, whereas others might integrate over only a
single EOD cycle and thus function as synchrony detectors.
The electrosensory system may therefore be an ideal prepara-
tion for investigating the difficult problem of decoding popu-
lation activity for a wide range of stimuli.
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