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Golowasch, Jorge, Mark S. Goldman, L. F. Abbott, and Eve
Marder. Failure of averaging in the construction of a conductance-
based neuron model. J Neurophysiol 87: 1129-1131, 2002; 10.1152/
jn.00412.2001. Parameters for models of biological systems are often
obtained by averaging over experimental results from a number of
different preparations. To explore the validity of this procedure, we
studied the behavior of a conductance-based model neuron with five
voltage-dependent conductances. We randomly varied the maximal
conductance of each of the active currents in the model and identified
sets of maximal conductances that generate bursting neurons that fire
a single action potential at the peak of a slow membrane potential
depolarization. A model constructed using the means of the maximal
conductances of this population is not itself a one-spike burster, but
rather fires three action potentials per burst. Averaging fails because
the maximal conductances of the population of one-spike bursters lie
in ahighly concave region of parameter space that does not contain its
mean. This demonstrates that averages over multiple samples can fail
to characterize a system whose behavior depends on interactions
involving a number of highly variable components.

INTRODUCTION

Measurements of neuronal conductances often exhibit a
large degree of variability (Gardner 1993; Golowasch et al.
1999; Liu et al. 1998). It is customary to characterize such data
using means and variances. For example, mean conductance
values are typically used to set the parameters of a model
constructed to simulate neuronal activity. If the resulting model
fails to capture the behavior of the neuron being modeled, the
parameters are normally adjusted within aregion characterized
by the variances of the measured values. It has been suggested
previously that such a program can fail (Beer et al. 1999,
Foster et al. 1993; Goldman et al. 2001). Here we present an
example that illustrates this problem and suggests when it will
occur. We use a population of model neurons as our data and
show that a model built with parameters set to averages of the
corresponding conductances, or to most of the values within a
1 SD covariance ellipse about the mean, fails to match the
behavior of the neurons that were used to generate the data. In
this example, averaging fails not as a result of measurement
error, but because the distribution of data points is poorly
characterized by its mean and variance or even other higher
order statistical measures. Specifically, the mean and most of

the 1 SD covariance €llipse do not lie within the distribution
from which they are computed.

METHODS
Electrophysiology

Experimental methodology follows that described previously
(Golowasch et al. 1999). We used two-electrode voltage clamp to
measure the peak conductances of three K* currents (I g, |cqe and
1,) expressed in isolated inferior cardiac (IC) neurons of the stoma-
togastric ganglion of the crab Cancer borealis. The IC neuron was
isolated by adding 105 M picrotoxin (PTX) and 10~ 7 M tetrodotoxin
(TTX) to the bath. Peak conductances were calculated at +20 mV,
assuming a potassium reversal potential of —80 mV. Currents were
separated as described previously (Golowasch et a. 1999).

Model description

A single compartment conductance-based model was built using
standard Hodgkin-Huxley equations to describe five voltage-depen-
dent conductances (Na* conductance, gNa; delayed-rectifier K™ con-
ductance, gKd; A-type K* conductance, gA; Ca?"-activated K™
conductance, gKCa; and Ca®" conductance, gCa) and afixed voltage-
independent leak current. The kinetics and voltage dependence of
these conductances are based on measurements performed on cultured
stomatogastric ganglion (STG) neurons (Turrigiano et al. 1995) and
are exactly asdescribed in Liu et a. (1998). In our model, we fixed the
ratio of the maximal conductances of the fast and slow Ca®* currents
(CaT and CaSiin Liu et al. 1998) at 1.25. Values reported are for the
fast component only. Buffering of Ca?" (used in computing |y,
follows the model described previously (Liu et a. 1998), but with a
buffering time constant of 200 ms.

We chose maximum conductances for the currents randomly from
uniform distributions over the ranges (in mS/cm?): g,,,Na, 0—800;
OmaxKd, 0—200; g,1axCa, 0-5; grmaxA, 0—75; 00K Ca, 0-300; gLeak,
fixed at 0.01. These distributions all have SD to mean ratios of 1/4/3,
which sets the scale for the variability seen in the model. The model
was integrated numerically using a second-order accurate, stable
method with adaptive step size.

RESULTS

Each class of identified neurons of the crustacean STG
displays a characteristic and stereotyped firing pattern. None-
theless, voltage-clamp measurements of three K™ currents
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FiG. 1. Variation in the peak conductances of 3 K* conductances for a
neuron of the crab stomatogastric ganglion (STG). Peak conductances mea-
sured in the inferior cardiac (1C) neuron of 22 different preparations vary over
afactor of 3.1 for gKd, 4.0 for gKCa, and 2.9 for gA. Means and SDs for the
3 conductances are as follows: gKd = 0.77 * 0.27 nS, gkCa = 6.05 = 2.15
nS, gA = 158 * 0.50 nS. A subset of these data has been published in
different form previously in Golowasch et al. (1999).

show athree- to fourfold variability in peak conductance (Fig.
1). To mimic the variability seen in such conductance data, we
built 2,000 model neurons by randomly choosing sets of max-
imal conductances (Bhallaand Bower 1993; Foster et al. 1993;
Goldman et al. 2001) for the 5 voltage-dependent currents of
the model (meTHops). We classified the resulting patterns of
activity as silent, tonically firing action potentials, or bursting
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FIG. 2. Failure of averaging in a conductance-based model neuron. A, left
panels: voltage traces for 3 observed one-spike bursters. Conductance values
in mSecm? 1, gpaNa = 400, graKd = 20.0; 2, graNa = 50.0, graKd =
20.0; 3, gnaxNa = 50.0, g, Kd = 100; al 3, gnCa = 4.0, 0 = 5.0,
ImaxKCa = 250. B: neuron generated from the average conductances of al the
one-spike bursters (gNa = 283, gKd = 38.0, 9,Ca = 345, 0 =
26.2, gaxKCa = 146). The insets are 50 ms in width and have tick marks at
—30 mV. Right panels: histograms showing the values of the Na™ and 4 times
the delayed-rectifier K™ maximal conductances.
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FIG. 3. Single and multiple spike bursters. A: number of spikes per burst (O,
black; 1, blue; 2, green; 3, olive; 4, orange; 5, burgundy) for bursting neurons
with the indicated values of g,,.«Na and g,,,,,Kd. The difference in dot sizesis
for ease of visualization only. One-spike bursters (blue) lie in an L-shaped
region that does not include its mean (red square with cross, which generates
the activity seen in Fig. 2B) or most of its 1 SD covariance ellipse (black oval
curve; individual conductance SDs in mScm? are oy, = 241; oy = 50.6;
0ca = 1.18; o5 = 20.1; o«ca = 88.6). Bursters with more than 1 spike per
burst appear randomly distributed in this 2-dimensional projection. Labeled
cells (red numbers 1-5) correspond to voltage traces in Fig. 2A and Fig. 3B.
B: voltage traces for 2 neurons (a two-spike burster and a four-spike burster)
with conductances lying within 1 SD of the mean (conductance values in
mS/cm? 4, gpNa = 229, g,,Kd = 60.2, g,.,Ca = 2.72, g = 36.0,
OmaxKCa = 158; 5, g ,oxNa = 296, ¢, Kd = 26.4, g..Ca = 2.89, 0 aA =
15.5, gxKCa = 90.6). The insets are 50 ms in width and have tick marks at
—30 mV. C: distribution histograms showing the number of one spike bursting
neurons with the indicated amount of g,,,.«Na (left) or g,,.Kd (right).

with a certain number of spikes per burst. From these runs, we
found that 164 model neurons fire one spike per burst, and we
used these as our set of “identified one-spike bursting neurons”
(Fig. 2A, traces 1-3 represent 3 examples). The one-spike
bursters display similar firing patterns (Fig. 2A, left) despite
having very different maximal conductances (Fig. 2A, right).

We used the conductance data from these one-spike bursters
to represent recordings from the same identified neuron in
different preparations. Conventionally, these data would be
used to construct a single model neuron with maximal conduc-
tances equal to the averages of the measured values. Following
this procedure, we built a model neuron using the average
maximal conductances of our 164 model neuron set. Surpris-
ingly, this average model is not itself a one-spike burster, but
instead is a three-spike burster (Fig. 2B). Moreover, we found
that only 28% of 500 additional model neurons constructed
from randomly sampled points within the 1 SD ellipse defined
by the covariances of the sampled one-spike bursters were
themselves one-spike bursters (a 2-dimensional projection of
this ellipse is shown in Fig. 3A).

Figure 3 illustrates why averaging fails in this case. Figure
3A shows the Na" maximal conductance, g,,Na, and the
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delayed rectifier K maximal conductance, g,,,Kd, of al of
the bursting neurons from the 2,000 runs of the model. The
one-spike bursters (Fig. 2A) are shown in blue, while multiple-
spike bursters (Fig. 3B) are colored according to their number
of spikes. The one-spike bursters are defined almost exclu-
sively by low values of g,,.«Na and/or g,,.,.Kd (Figs. 2A and
3A). Asaresult, their maximal conductances liein an L-shaped
(concave) region. Consequently, in this data set, the mean (red
square with cross in Fig. 3A) and most of the points within 1
SD of the mean (black ellipse in Fig. 3A) fal outside the
concave region defining the one-spike bursters. Figure 3C
shows distributions for g,,.«Na and g,,,Kd aone and demon-
strates that the 164 one-spike bursters do not fall into 2 separate
classes on the basis of single-conductance measurements.

DISCUSSION

The essential feature that leads to the failure of averaging in
this study is the concave, L-shaped region of parameter space
occupied by the one-spike bursters. This shape defines a non-
linear relationship between the values of g,,,Na and g,,.Kd
that is not captured by standard statistical measures such as
means and variances (Fig. 3A). The averaged model (Fig. 2B)
fails because the process of averaging does not account for this
nonlinear relationship (Beer et a. 1999; Foster et a. 1993;
Goldman et a. 2001). Variances fail to describe the relation-
ship between g,,,,«Na and g,,,.,Kd because they only character-
ize variability of linear combinations of parameters that are
assumed to be independent. Multimodal distributions of indi-
vidual variables might serve as an indication that averaging
may fail. However, unimodal distributions, such as those in
Fig. 3C or even normal distributions, can lead to a failure of
averaging, due to correlations not revealed by the individual
distributions. This happens, for example, if the values near the
mean of one variable are correlated with values within the tails
of the distribution for a second variable.

Capturing the nonlinear relationships between system com-
ponents may be essential for understanding system function in
many biological systems. In the case of our model, individual
measurements of g,,,Na in one group of cells and of g,,,,Kd
in another group only reveal atendency for each conductance
to have low values (Fig. 3C). Simultaneous measurements of
these conductances in each cell studied (Fig. 3A) revea that
OmaxNa and g,,,,Kd act together as a switch between single-
and multi-spike bursting, with multi-spike bursting arising only
when g,,«Na and g,,.xKd are both sufficiently large (enough
fast inward Na* current to produce a 2nd action potential
within the burst and enough fast outward K* current to repo-
larize the cell, allowing the 2nd action potential to be pro-
duced).

Theissues raised by this paper are not specific to biophysical
measurements of conductances in neurons or to the construc-
tion of neuronal models; they may be relevant to understanding
many complex biological systems (Koch and Laurent 1999;
Weng et a. 1999). We do not know how frequently averaging
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will fail in complex systems, but it may occur more often than
is typically suspected (Beer et a. 1999; Chiel et a. 1999;
Foster et a. 1993). Perhaps some of the fine tuning required to
make models reproduce experimentally observed activity may
be correcting for failures of averaging rather than measurement
errors. Of course, using averaged parameters in models often
works well. In our example, averaging fails for one-spike
bursters but works for multiple-spike bursters in the sense that
amodel built by averaging parameters over al n-spike bursters
(for n > 1) produces n spikes per burst.

Averaging will fail whenever the mean of the distribution of
relevant data points lies outside the region they occupy. Stan-
dard statistical measures do not indicate when this occurs
because they do a poor job of characterizing the boundary of a
region. However, scatter plots of the relevant parameters, as
used here, should be sufficient to reveal a failure of averaging
by showing regional boundaries. To characterize a system
when averaging fails, it is critical to measure multiple system
components together in the same preparation, even though this
may be technically challenging. When simultaneous measure-
ments are not available, modeling studies can help uncover the
relationships between model parameters that must be charac-
terized to account for observed system behavior.
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