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Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects
of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the
consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information.
We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing
frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn
lead to information resonances �i.e., increased information transfer for specific ranges of input frequencies�.
The resonances are created at the expense of decreased information transfer in other frequency ranges. Using
linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural
transfer function for a single neuron as a function of network size. We also find that balanced excitatory and
inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate.
Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop
can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of
feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved
over selected frequency ranges.
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I. INTRODUCTION

Anatomical studies have revealed that feedback is omni-
present in the central nervous system �1�. It is generally
agreed that feedback can modify the flow of sensory infor-
mation from the periphery �2,3�. Experimental studies have
demonstrated that feedback can alter intrinsic neuron dynam-
ics and create oscillatory network dynamics �2–5�. There
have been a number of theoretical studies dealing with
closed-loop delayed feedback and their effects on single neu-
ron and network dynamics �3,5–10�. Mean field equations
for the population activity were derived in the early 1970s
�11�. Since then numerous theoretical studies have dealt with
the population activity of infinite-size networks of noisy neu-
rons �7,9,10,12�. Results for finite-size networks have been
obtained using corrections from the thermodynamic limit
�10,13� and are thus a priori not valid for arbitrary network
size. Furthermore, most studies look at the activity of the
entire network �7,9,10,13� while experimental data is typi-
cally obtained from at most a few neurons �2,3�. Studies
have shown that delayed excitatory and inhibitory feedback
can alter network dynamics �7,9,10,13� as well as the net-
work’s transfer function �10�. However, little is known theo-
retically about the influence of both delayed excitatory and
inhibitory feedback on the transmission of information by
single neurons whereas experimental data is typically gath-
ered from single neurons.

The novelty of our work lies in deriving an analytical
expression for the mutual information rate density as a func-
tion of feedback gain, sign, delay, and the number of neurons

in the network. This result relies on linear response theory
applied to both the stimulus as well as the feedback input.
The building block of the theory is the firing rate response of
a noisy neuron to sinusoidal input of different frequencies
known as the susceptibility. It can be estimated experimen-
tally or derived from a Fokker-Planck analysis of this time
dependent problem. This theory is then applied to a network
model of stochastic integrate-and-fire �IF� neurons globally
coupled by both excitatory and inhibitory feedback. We show
the effects of varying model parameters such as feedback
strength and delay as well as network size. Since our theory
looks at information transmission by single neurons, it is
possible to apply it to experimental data. We thus finally
illustrate our results using experimental data from the elec-
trosensory lateral line lobe �ELL� of weakly electric fish and
discuss the challenges of matching theory to data for such
complex neural systems.

The paper is organized as follows: the model and infor-
mation theoretic quantities of interest are presented in Secs.
II and III. The linear response theory is presented in Sec. IV.
We then show in Sec. V that feedback can change both the
transfer function of a single neuron as well as its output
dynamics in a network of integrate-and-fire neurons, in
agreement with �10�. We then go beyond transfer function
analysis to show that oscillatory dynamics near a specific
frequency can increase information transmission for stimuli
containing these frequencies. This is, however, at the ex-
pense of decreased information transfer at different frequen-
cies. This effect is then shown to dependent on the network’s
size as well as the feedback strength and delay. Balanced
excitation and inhibition with slightly different delays can
interfere in a constructive manner to further enhance infor-
mation transfer over a narrow range of frequencies without
changing the mean firing rate. Experimental results as well
as the explanation of information resonances in terms of our
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theory are presented in Sec. VII. We are not aware of studies
that have applied such results on the interplay of feedback,
noise, information transfer and network size to a real experi-
ment.

II. IF NEURON NETWORK

For simplicity, each neuron in the network is modeled by
perfect integrate-and-fire dynamics �14� driven by additive
white noise. Each receives both excitatory and inhibitory de-
layed feedback from every neuron in the network. There are
two separate delays for each of these feedback pathways.
The dynamics of neuron k are described by the following
equations:

V̇k = � + �2D�k�t� + S�t� + geKe�t − �e� + giKi�t − �i� , �1�

Ke,i�t� =
1

N
�
k=1

N

�
j=1

Mk�t�

�e,i�t − tkj� , �2�

where � is a constant bias current that is the same for all
neurons, �k�t� are independent and identically distributed
Gaussian random variables of mean zero and standard devia-
tion unity, D is the noise intensity, ge and gi are the respec-
tive excitatory and inhibitory gains, and Ke�t� and Ki�t� are
the sum of the N spike trains convolved respectively with the
synaptic kernels �e�t� and �i�t�. �e and �i are the excitatory
and inhibitory delays, respectively. S�t� is the stimulus, tkj is
the jth firing time of neuron k while Mk�t� is the spike count
of neuron k at time t. Each time the voltage reaches a thresh-
old value �, it is reset to 0 and an action potential is said to
have occurred. We use delays that range between 10 and
30 msec. These are justified by thalamo-cortical delay loops
�15� as well as values in the electrosensory lateral line lobe
of weakly electric fish �16�. A circuit diagram is shown in
Fig. 1.

III. INFORMATION THEORY

Information theory was originally developed in the con-
text of communication systems �17� and is being used in
order to determine the nature of the neural code �18�. We use
the indirect method to quantify the amount of information
transmitted by a single neuron spike train �18,19�. The mu-
tual information rate MI �in bits/sec� is given by

MI = �
0

�

I�f�df , �3�

I�f� = − log2�1 − C�f�� , �4�

C�f� =
�H�f��2Pss�f�

Pxx�f�
, �5�

where I�f� is the mutual information rate density and C�f� is
the coherence function. H�f�	 Psx�f� / Pss�f� is the transfer
function of the system, Psx�f� is the cross-spectrum between
the stimulus and the spike train Pss�f� is the power spectrum

of the stimulus S�t�, and Pxx�f� is the power spectrum of the
spike train X�t�=�i=1

M�t���t− ti� where ti is the ith spike and
M�t� is the spike count at time t. Equation �4� requires that
the stimulus S�t� has a Gaussian probability distribution. It
can be shown that equation �4� gives the maximum amount
of information that can be decoded by linear means �19�.
Thus, Eq. �4� is exact for a linear system with additive noise
�18�. A nonlinear decoder such as a noiseless neuron could
potentially outperform a linear one especially if the encoding
system has strong nonlinearities �18–20�. Equation �4� thus
in general gives a lower bound on the rate of information
transmission. However, we note that calculating the exact
mutual information rate for a nonlinear excitable system is
difficult and that analytical expressions only exist for rate
modulated Poisson processes �21�. This is why we use linear
response theory to compute C�f� and thus I�f�.

Throughout this study, we use low-pass filtered Gaussian
white noise as an input stimulus with a flat power spectrum
of intensity � up to a cutoff frequency fc. The stimulus thus
has variance 2�fc. Such stimuli have been used widely to
characterize the neural response to different frequencies
�18,22,23�. We note that the coherence C�f� is a function of
both the transfer function H�f� as well as the output spike
train power spectrum Pxx�f�. Both quantities can thus influ-
ence the amount of information transmitted by a neuron.

IV. LINEAR RESPONSE THEORY

In this section, we derive analytical expressions for the
transfer function H�f�, spike train power spectrum Pxx�f�,

FIG. 1. Circuit diagram of our model. Each neuron is repre-
sented by a circle and sends its output to two kernels �one excita-
tory, one inhibitory� that sum the outputs from the population. The
kernels’ output is then sent back to the neural population with de-
lays �e and �i �gray and light gray, respectively�. This example is
drawn for N=3 neurons.
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and the coherence function C�f� with linear response theory
�25�. According to linear response theory �24–27�, the spike
train X�t� of a single neuron in the network in response to a
time dependent input I�t� is approximated by

X�t� = X0�t� + �	 � I��t� , �6�

where X0�t� is the unperturbed spike train �i.e., the spike train
when I�t�	0� and 	�t� is the susceptibility in response to the
input that will in general both depend on the noise intensity
D. The “�” denotes the convolution operation. We note that
for a stochastic nonlinear system, equation �6� is usually

X�t��= 
X0�t��+	� I�t� where 
¯� denotes an average over
noise realizations. However, Eq. �6� will hold approximately
for large D �8,24�. Moreover, it is assumed that the system
behaves like a linear system in which the transfer function is
given by the susceptibility 	�t�.

Taking the Fourier transform of Eq. �6� gives

X̃�f� = X̃0�f� + 	̃�f�Ĩ�f� . �7�

As done previously �8�, we treat the feedback as an addi-
tional input to the system. Thus, for the model considered
here, I�t� will have the following form:

I�t� = S�t� + geKe�t − �e� + giKi�t − �i� . �8�

Applying Eqs. �2� and �8� in Eq. �6� and taking the Fou-
rier transform of both sides gives

X̃k�f� = X̃0k�f� + 	̃�f�S̃�f� + 
̃�f�
1

N
�
j=1

N

X̃j�f� , �9�


̃�f� = 	̃�f� �
k=e,i

gk�̃k�f�exp�− 2�if�k� , �10�

where X0k�t� is the baseline activity of neuron k in the ab-
sence of stimulation or coupling by feedback. We will as-
sume that the baseline activities of any neuron pair in the
network are not correlated with each other. We note that at
this point the spike trains X0k�t� are still unknown. We will
first use Eqs. �9� and �10� in order to derive expressions for
the power spectra of a single neuron as well as its transfer
function. We will then give functional forms expressions for
the various quantities needed to compute these expressions.

We first obtain an expression for the mean network activ-
ity by summing Eq. �9� from k=1 to N and dividing by N
which gives upon rearranging:

1

N
�
k=1

N

X̃k�f� =

1

N
�i=1

N
X̃0k�f� + 	̃�f�S̃�f�

1 − 
̃�f�
. �11�

Equation �9� now becomes

X̃k�f� = X̃0k�f� + 	̃�f�S̃�f� + 
̃�f�

1

N
�i=1

N
X̃0k�f� + 	̃�f�S̃�f�

1 − 
̃�f�
.

�12�

We obtain the following expression for the output spike
train power spectrum PXkXk

�f� of neuron k using Eq. �12� and

the definition PXkXk
�f�	
X̃k

*�f�X̃k�f�� where 
¯� denotes an
average over realizations of the internal noise:

PXkXk
�f� = P0�f��N − 1

N
+

1

N

1 +


̃�f�

1 − 
̃�f�

2�

+ �	̃�f��2Pss�f�
1 +

̃�f�

1 − 
̃�f�

2

. �13�

Here P0�f�	
X̃0k
* �f�X̃0k�f�� is the baseline power spec-

trum of neuron k that is independent of k since we are con-
sidering an homogeneous network. As done previously �8�,
we split the feedback input into constant and time dependent
parts. The constant part gives an effective bias current �̃
which can be determined from �̃=�+ �ge−gi�r0��̃� where
r0��̃� is the firing rate of a single uncoupled integrate-and-
fire neuron.

We note that the spike train power spectrum, being a sec-
ond order quantity, cannot strictly be inferred from the sus-
ceptibility which is only a first order quantity. However, in
deriving Eq. �13�, we have assumed that the system behaves
like a linear system with transfer function given by the sus-
ceptibility with the feedback treated as an input to the sys-
tem. We note that this approximation has been used success-
fully several times in the literature �27,28� but that there are
examples in which it can fail �29�.

An expression analogous to Eq. �13� has been derived in
the limit N→� for leaky integrate-and-fire neurons coupled
by inhibitory feedback �8,10�. Our results extend those of �8�
in that we consider the effects of both excitatory and inhibi-
tory feedback together on information transmission in net-
works of arbitrary size.

We can also derive an expression for the transfer function

H�f�	
X̃k�f�S̃*�f�� / Pss�f� that is also independent of k since
we are considering an homogeneous network:

H�f� = 	̃�f��1 +

̃�f�

1 − 
̃�f�
� �14�

with 
̃�f� given by Eq. �10�.
Using the definition of the coherence function between

spike train Xj�t� and the stimulus S�t� as well as Eqs. �13�
and �14�, we get

C�f� = �1 +

P0�f��N − 1

N
+

1

N

1 +


̃�f�

1 − 
̃�f�

2�

�	̃�f��2Pss�f�
1 +

̃�f�

1 − 
̃�f�

2 �

−1

�15�

from which one gets the mutual information rate density I�f�
using Eq. �4� and the mutual information rate MI using Eq.
�3�.

Finally, in order to apply Eq. �15� to the integrate-and-fire
network defined by Eqs. �1� and �2�, we need expressions for
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the susceptibility 	�t� as well as the baseline power spectrum
P0�f�. We can calculate the power spectrum under the as-
sumption of independent interspike intervals using the fol-
lowing formula derived in �31�:

P0�f� =
1


I�
1 − �F1�f��2

�1 − F1�f��2
, �16�

where 
I� is the mean interspike interval and F1�f� is the
Fourier transform of the interspike interval distribution P�I�.
For the integrate-and-fire model, P�I� is given by the well-
known inverse Gaussian function:

P�I� =
�

�4�DI3
exp�−

�I�̃ − ��2

4DI
� . �17�

Taking the Fourier transform of Eq. �17� and using Eq.
�16� gives

P0�f� =
�̃

�

1 − 
exp�1

2

�̃�

D
−��̃2

D
− 8if���2

D
�
2


1 − exp�1

2

�̃�

D
−��̃2

D
− 8if���2

D
�
2 .

�18�

Further, an expression for the Fourier transform of the
susceptibility 	̃�f� has already been derived for the integrate-
and-fire neuron �30�:

	̃�f� = �̃2

�1 +
8�ifD

�̃2 − 1

4�ifD
. �19�

Thus we can obtain analytical expressions for the mutual
information density and the power spectrum using Eqs. �13�,
�15�, �18�, and �19� that can be compared with numerical
simulations of the integrate-and-fire network in different pa-
rameter regimes.

We note that the expressions for the spike train power
spectrum as well as the coherence are general and thus could,
in principle, be applied to other neuron models and we will
show an example of application to experimental data.

V. SHAPING OF INFORMATION TUNING CURVES
BY DELAYED FEEDBACK

A. Effects of feedback gain

Figure 2�a� shows the coherence C�f� from numerical
simulations of Eqs. �1� and �2� as well as the values of the
mutual information rate density and the coherence derived
from linear response theory obtained using Eqs. �4� and �15�,
respectively. Parameters were chosen such that the response
was broadband over a wide range of frequencies in the ab-
sence of feedback �squares� in order to minimize the effects
of intrinsic dynamics such as potential resonances. The noise
and signal are of the same order of magnitude and this is
done to mimic conditions seen in vivo. Good agreement be-
tween theory and numerical simulations is seen. Excitatory
feedback �hollow triangles� is seen to increase the response

at f =0 and near f =50 Hz and 100 Hz. These peaks corre-
spond to integer multiples of the inverse delay. On the other
hand, inhibitory feedback �circles� is seen to increase the
response near f =25 Hz and f =75 Hz. Figure 2�b� shows the
information density I�f�. It is seen the both the coherence
C�f� and the information density I�f� have the same shape
which is not surprising given Eq. �4�. For this reason, we will
restrict ourselves to showing the coherence function from
now on. Thus, excitatory and inhibitory feedback have oppo-
site effects on neural information frequency tuning by in-
creasing and decreasing the amount of information transmit-
ted in complementary frequency ranges.

We note that similar results were seen for the power spec-
tra of the network activity as well as system gain for both
infinite size and finite size networks of integrate-and-fire

FIG. 2. �a� Input-output coherence C�f� as a function of fre-
quency f for no-feedback �squares�, inhibitory feedback �circles�,
and excitatory �triangles�. Throughout this study, the solid lines are
the theoretical curves obtained from Eqs. �13�–�15� under the cor-
responding conditions. Excitatory and inhibitory feedback are seen
to have opposite effects on information tuning. �b� Mutual informa-
tion rate density I�f�. Parameter values for the no-feedback case
were �=0.3, D=0.01, �=1, �=0.01, fc=800 Hz, ge=gi=0, and
N=100. In the case of inhibitory feedback, we used gi=−0.8 and
�i=20 msec. In the case of excitatory feedback, we used ge=0.8,
�e=20 msec, and �=0.1. Throughout this study, we used �e�t�
=�i�t�=63.66 exp�−50t2�. We note that the particular shape of the
function used does not qualitatively affect the nature of our results
as long as their power spectrum does not decay at the frequency of
interest. Firing rates for individual neurons were around 80 Hz. In
both panels, the vertical line indicates the error bar on the simula-
tion data. These represent maximum error bars for the simulation
data and were always calculated from the scatter in the estimates
obtained using independent noise realizations. Error bars in subse-
quent figures were always estimated in that way.
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neurons �7,10�. Our results are obtained for single neurons in
the network however. In order to understand this effect and
to compare with previous results, we plot both the system
gain G�f�= �H�f�� �Fig. 3�a�� as well as the spike train power
spectrum PXkXk

�f� �Fig. 3�b��. We observe that inhibitory
�circles� and excitatory feedback �triangles� each have the
same qualitative effect on the gain as well as the power spec-
trum. For example, inhibitory feedback causes a reduction in
both the system gain and power spectrum at zero Hz. How-
ever, the reduction in gain is greater than the reduction in the
power spectrum, hence the overall coherence is reduced. Ex-
citatory feedback has the opposite effect, increasing the sys-
tem gain and power spectrum near f =0. Thus, as shown
previously �7,10�, feedback can shape the transfer function
by creating resonances. These in turn will lead to peaks in
the spike train power spectrum, which are characteristic of
oscillatory dynamics. We show here that these resonances are
also seen in the mutual information rate density and thus can
increase the amount of information transmitted about a time-
varying stimulus.

It is well known that both inhibitory feedback
�5–7,11,32,33� as well as excitatory feedback �7,10� can cre-
ate oscillatory network dynamics and shape the transfer func-
tion. We have shown here analytically the consequences of
these dynamics on information transfer. At the single neuron
level, inhibitory and excitatory delayed feedback can shape

the neural transfer function, the power spectrum, and the
coherence and mutual information rate density functions.

B. Effects of network size

We now explore the effects of the network size N on this
shaping. Figure 4 shows the coherence C�f� for different N
in the case of inhibitory feedback. One observes that the
enhancement of the coherence near f =25 Hz grows with N.
In particular, the coherence with N=1 is similar to that with
no feedback present �compare with Fig. 2� as predicted by
linear response theory. This can be seen from Eq. �15� where
setting N=1 gives

C�f� = �1 +
P0�f�

�	̃�f��2Pss�f��−1

. �20�

For N=1, all dependence on 
̃�f� and thus all dependence on
feedback input vanishes, and the coherence is equal to its
value when gi=ge=0 �i.e., no feedback�. Note that this is not
because the feedback has no effect. Rather, as we will see,
the feedback alters the transfer function and spike train
power spectrum in a similar fashion, causing no change in
the coherence C�f� that is related to the ratio of the two �note
that Pss�f� is constant throughout�.

As N increases however, the coherence increases and
saturates for N large. In order to explain this effect, we show
the system gain and the spike train power spectrum as a
function of network size N in Figs. 5�a� and 5�b�, respec-
tively.

FIG. 3. System gain G�f�= �H�f�� �a� and output spike train
power spectrum �b� for one neuron in a network of 100 neurons as
a function of frequency f for the same conditions as in Fig. 2. The
solid curves are computed from Eqs. �14� and �13�. Excitatory feed-
back �triangles� will tend to increase the response near f =0 and f
=50 Hz while inhibitory feedback �circles� will tend to increase the
response near f =25 Hz and f =75 Hz. Parameter values are the
same as in Fig. 2. Error bars are shown for the simulation data.

FIG. 4. Coherence C�f� as a function of frequency f for different
values of system size N, in the presence of inhibitory feedback. The
coherence near f =25 Hz is seen to increase as a function of N. This
is however at the expense of the coherence near f =0. The solid
curves are computed from Eq. �15�. Parameter values were �=0.3,
D=0.01, �=0.01, �=1, fc=800 Hz, ge=0, gi=−0.8, and �i

=20 msec. Error bars are shown for the simulation data.
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Figure 5�a� shows that the system gain is independent of
network size, as predicted by the theory. However, this is not
the case for the spike train power spectrum: the power at f
=25 Hz decreases as a function of N �Fig. 5�b��, thus in-
creasing the coherence C�f�. This is due to the average net-

work activity term �k=1
N X̃k�f� /N in Eq. �9�. For N=1, this

term is purely influenced by the single neuron’s activity in
the past that is governed both by the stimulus S�t� and the
noise �1�t�. As N increases, the influence of the stimulus S�t�
remains since it is a common input to all neurons in the
network. However, the influence of the intrinsic noise
sources �k�t� is reduced since they are uncorrelated by as-
sumption and this is reflected in decreasing fluctuations in

�k=1
N X̃k�f� /N around its time varying mean that decay as

1/�N. This has the effect of reducing the power spectrum.
The delay and the sign of the feedback gain can cause

both constructive and destructive interference at some fre-
quencies between the feedforward and feedback signals. The
former yields increased information transfer while the latter
causes decreased information transfer.

C. Effects of delay

Finally, we explore the effects of varying the delays �e
and �i. Figure 6�a� shows the coherence C�f� for different
values of �i. It is seen that the maximum in information
tuning shifts with the delay �i. In fact, the first maximum in

tuning is located at f ��2�i�−1 while the second maximum is
located at f �1.5��i�−1. Moreover, Fig. 6�b� shows that the
first maximum in tuning �other than the one at the origin� for
excitatory feedback is located at frequency f ��e

−1. Attenua-
tion and enhancement by excitatory and inhibitory feedback
are thus broadly tunable by changing the delays �e and �i.

D. Interaction of excitatory and inhibitory delayed
feedback

Typically, feedback consists of parallel excitatory and in-
hibitory components emanating from a common population.
This is the case for example for the cortico-thalamic loop
�34�. In this general situation, one might expect an interac-
tion between the individual shaping effects for each kind of
feedback, and that the net effect will depend on the relative
delays for each pathway. One may generally expect that the
excitatory feedback will lead the inhibitory one, since the
latter often results from an interposed population of inhibi-
tory interneurons. Different relative delays will lead to dif-

FIG. 5. System gain G�f� �a� from Eq. �14� and output spike
train power spectrum �b� from Eq. �13� as a function of system size
N. Although the system gain is independent of system size �a�, the
power spectrum decreases as a function of N �b�. Parameter values
are the same as in Fig. 4. The stimulus is Gaussian white noise with
fc=800 Hz. Error bars are shown for the simulation data.

FIG. 6. Interaction of balanced excitation and inhibition. �a�
Effects of varying the delay �i on the resonance which is located at
a frequency �2�i�−1. We used �=0.3, D=0.01, �=1, fc=800 Hz,
ge=0, gi=−0.8, and N=100. �b� Effects of varying the delay �e on
the resonance, which is located at a frequency �e

−1. We used �
=0.3, D=0.01, �=1, �=0.01, fc=800 Hz, ge=0.8, gi=0, and N
=100. �c� Effects of balanced excitation and inhibition. We used
�=0.3, D=0.01, �=0.01, �=1, fc=800 Hz, N=20, �e=20 msec,
and �i=30 msec. Error bars are shown for the simulation data.
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ferent superpositions of constructive interference from each
individual pathway. In particular, for the case of balanced
excitatory and inhibitory feedback with �e=2/3�i, the con-
structive interference from each pathway occurs over the
same frequency ranges, leading to super-resonances in the
coherence, and thus in the information transfer. This is
shown in Fig. 6�c� where the creation of such a super-
resonance near f =50 Hz is observed. Thus, a given neuron
in this network with mixed delayed feedback can signifi-
cantly enhance the coherence over a particular frequency
range, all the while maintaining a constant mean firing rate,
since it receives zero net current. We note that previous stud-
ies have looked at the effects of both excitatory and inhibi-
tory feedback on spike train dynamics and system gain
�9,10� but that results were obtained for the population ac-
tivity. Our results below will show that they hold for the
single neuron and we extend previous results by showing
that these resonances manifest themselves in the coherence
as well as the mutual information rate density.

VI. LIMITS OF THE APPROACH

The linear response theory approach used here is expected
to fail in parameter regimes where significant nonlinearities
are caused by either the fluctuating input S�t�, the feedback,
or both. In order to test the limits of the approach, we varied
both the feedback gain as well as the stimulus intensity. Fig-
ure 7�a� shows the mutual information rate MI obtained from
numerical simulations as well as from the theory as a func-
tion of feedback gain. While both estimates agree well for
small feedback strength, significant differences start to de-
velop as the feedback gain approaches unity in magnitude. In
particular, the theory tends to overestimate the information
rate MI. Figure 7�b� shows MI as a function of stimulus
intensity �. Again, both estimates agree well for small � as
expected. However, significant differences appear for �
�0.015 and the theory is again seen to overestimate the
information rate. This overestimation has been observed be-
fore �27� and is due to the fact that nonlinearities will tend to
reduce estimates of the coherence and thus of the mutual
information rates themselves �24�.

This raises an important question: in what regime do real
neurons in the brain operate? While neurons are clearly non-
linear devices, they are subjected to intense synaptic input in
the brain that might linearize their transfer function. In order
to provide some answers, we apply the theory to in vivo
experimental data in the next section.

VII. APPLICATION OF LINEAR RESPONSE THEORY
TO IN VIVO DATA

A. Experimental protocol

In this section, we will apply the theoretical equation �15�
to experimental data obtained from sensory neurons in
weakly electric fish. We will see that the results of the pre-
vious section provide a qualitative explanation for our ex-
perimental results. These fish use modulations of their self-
generated electric field �EOD� to detect prey and
communicate with conspecifics �35�. Electroreceptive neu-

rons on their skin encode amplitude modulations of the EOD
�36� and send this information to pyramidal cells in the elec-
trosensory lateral line lobe �ELL� �37�. Pyramidal cells re-
ceive massive feedback input from higher brain centers as
well �38�. The pyramidal cell network is thus ideal in order
to study the effects of feedback on sensory processing
�3,8,16,39�.

The experimental protocol was described previously in
detail �39,40�. Briefly, the fish is paralyzed by intramuscular
curare injection and artificially respirated. Random ampli-
tude modulations of its own EOD are delivered by electrodes
far on each side of the animal and give rise to spatially uni-
form stimuli on each side. Spike trains from pyramidal cells
were obtained from extracellular recordings. We used low-
pass filtered white noise with fc=120 Hz. Pyramidal cells
receive feedback input from two sources: one direct and one
indirect �38�. Reversible blockade of indirect feedback input
to pyramidal cells was achieved by pharmacology �39�.

Data was gathered from Npyr=8 pyramidal cells. Figure 8
shows the coherence between the stimulus and obtained
spike train from one pyramidal cell under control �i.e., intact
feedback� �black� as well as during blockade �gray�. Block-
ing this feedback input to this pyramidal cell radically
changed its coherence function C�f�, increasing it at low
frequencies and decreasing the high frequency response. We
can assume that this feedback is dominantly negative �see

FIG. 7. �a� Mutual information rate MI from numerical simula-
tions �gray triangles� and from linear response theory �black
squares� as a function of gain g�i�. Other parameter values are the
same as in Fig. 2 except N=20. �b� Mutual information rate MI
from numerical simulations as a function of stimulus intensity �.
Other parameter values are the same as in Fig. 2 except N=20. In
both cases, deviations between numerical simulations and the
theory are seen as nonlinearities increase due to feedback alone �a�
and feedforward and feedback input �b�. Error bars are shown on
the simulation data.
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below�. One could thus postulate that the effects of feedback
input is to lower the coherence at low frequencies. Note that
all pyramidal cells recorded from showed a qualitatively
similar shift in their tuning after pharmacological treatment
�39�. This was quantified by computing the average coher-
ence values between 0–20 Hz and 40–60 Hz, Clow and
Chigh, respectively �41�. Blocking feedback increased Clow by
53% on average �p
10−3, pairwise t test, n=8� and reduced
Chigh by 53% on average �p=0.004, pairwise t test, n=8�.
Note that this is expected from our results for inhibitory
feedback as seen in Figs. 2 and 6.

B. Assumptions

In order to apply Eq. �15� to this data, we need expres-
sions for the baseline power spectrum P0�f� and the suscep-
tibility 	̃�f�. Although we are measuring the output of only
one neuron, the biological situation actually corresponds to
an active network of neurons. Both can be measured experi-
mentally: we measured P0�f� from spontaneous activity �i.e.,
no stimulus� for this cell. The feedback pathways in the ELL
require global stimulation �i.e., stimulation of the entire body
surface� in order to be active �39�. Thus, we assume that the
spontaneous activity is without feedback input as well. We
measure the transfer function by computing


X̃�f�S̃*�f�� / 
S̃�f�S̃*�f�� when feedback input was blocked.
Figure 9�a� shows the baseline power spectrum P0�f� while
Fig. 9�b� shows the absolute value of the Fourier transform
of the susceptibility �	̃�f�� or system gain G�f�. Although
there are heterogeneities in the pyramidal cell network
�39,40�, we will assume that the pyramidal cell network is
homogeneous for the purpose of applying the theory.

We now use existing in vitro physiological and anatomical

data in order to constrain the other parameters. Although the
indirect feedback pathway makes both excitatory and inhibi-
tory connections unto pyramidal cells, previous results
�39,42� have shown that it had a net inhibitory role on sen-
sory processing. We will thus assume for simplicity that ge
=0 and thus only gi will be allowed to vary. The delay �i can
be estimated from anatomy and is around �i=10 msec. The
number of pyramidal cells has been estimated to be around
N=1000 �43�. The function �i�t� can be estimated from the
synaptic PSPs recorded in vitro �44�. We thus take the fol-
lowing form for �i�t�:

�i�t� =
t

�
exp�−

t

�
� , �21�

with �=5 msec �44�. The only unconstrained parameter is
thus gi. It was found empirically that using gi=−3.5 gave the
best agreement with the data. Using the measured values for
P0�f�, 	̃�f�, �i�t�, N, �i, we predicted the response of this
pyramidal cell to stimuli with intact feedback.

C. Results

Figure 10�a� shows the prediction from Eq. �15� with
blocked feedback �gray� as well as the raw data �black� with
blocked feedback. This was done in order to test the validity
of the theory at first without considering the effects of feed-
back. There is good qualitative agreement between the two
curves as they have the same qualitative shape although the
theory underestimates the coherence for frequencies below
30 Hz. The low coherence from the theory comes from the
fact that the baseline power spectrum from this pyramidal
cell had high power at low frequencies. Figure 10�b� shows
the prediction from Eq. �15� �gray� as well as the raw data

FIG. 8. The coherence between the stimulus and the spike train
of an ELL pyramidal cell under control �black� and pharmacologi-
cal blockade of feedback �gray�. Blocking feedback is seen to in-
crease the coherence at frequencies 
20 Hz and at the same time
decrease the coherence at frequencies �20 Hz. The stimulus used
had a cutoff frequency fc=120 Hz. Error bars are shown as a ver-
tical line.

FIG. 9. �a� Baseline power spectrum P0�f� of this ELL pyrami-
dal cell. One sees significant structure in the 0–120 Hz frequency
range. �b� System gain G�f� under feedback blockade. Error bars
are shown as a vertical bar.
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�black� with intact feedback. Although there are discrepan-
cies at frequencies �40 Hz, the theory is able to qualita-
tively predict some of the increased response to high fre-
quencies and the decreased response to low frequencies seen
with the feedback intact. We note that linear response theory
tends to overestimate the coherence function as nonlineari-
ties will tend to reduce it �24�.

Thus, we have shown that the theory developed in this
paper could be applied successfully at least qualitatively to
experimental data in order to predict the effects of feedback.
Furthermore, comparison between Fig. 10 and Fig. 2�a� with
inhibitory feedback shows a good qualitative agreement with
the results from integrate-and-fire network model in the
sense that, in both cases, inhibitory feedback is seen to re-
duce the coherence at low frequencies and increase it at high
frequencies.

VIII. DISCUSSION

Neurons in vivo are constantly bombarded by synaptic
input that can significantly alter their response properties in
the absence of a recurrent feedback loop �45,46�. However, if
recurrent feedback loops exist, then this synaptic bombard-
ment is at least partly influenced by the neuron’s activity in
the past. Our results show that delayed excitatory and inhibi-
tory feedback alone or in combination can alter the dynamics
as well as the information transfer properties of single neu-

rons. In particular, both kinds of feedback will produce os-
cillations near specific frequencies in the spike train, as well
as frequency-dependent changes in gain. This leads to reso-
nances in the coherence, thus maximizing information trans-
fer over certain frequency ranges. Other studies have com-
puted either the system gain or power spectrum of the
network activity for both excitatory and inhibitory delayed
feedback �7,10�. Our results were obtained using the mutual
information density and coherence function thus showing
that resonances in both the gain and power spectrum actually
increase the amount of information transmitted about a
stimulus containing frequencies near these resonances.

It is well known from linear control theory that feedback
can alter the transfer function of linear systems �47�. What
was not clear prior to our study is how information about
time-varying signals is conveyed by networks of noisy non-
linear elements �such as neurons� with delayed mixed feed-
back and how this is affected by the network size. Analyzing
both the feedback dynamics as well as the gain of the noisy
neurons has enabled us to demonstrate how feedback can
alter frequency and information tuning of the network. Lin-
ear response theory reveals here that increased coherence at
certain frequencies occurs at the expense of decreased coher-
ence at other frequencies. Application of this theory to in
vivo experimental data is straightforward and can lead to
qualitatively correct predictions about the effects of inhibi-
tory delayed feedback. Other approaches are valid only for
infinite size networks �7� and use additional terms to deal
with finite size networks �10� that are a priori not valid for
small network size. We have shown that our approach was
valid for any N as N is simply a parameter in the formulas
presented here. The only limitation to our approach is that
the feedback and stimulus strengths must be small in order to
minimize the contributions of nonlinear terms. We also note
that our approach is limited to frequencies that are smaller
than the inverse time constant of the synaptic kernels �30�.

While neurons are clearly nonlinear devices due to their
spiking mechanisms, noise has been shown to linearize the
neuronal transfer function �48� and neurons are subjected to
a significant amount of noise in vivo �45�. This raises the
interesting question as to whether this amount of noise is
sufficient to have them operate in an essentially linear regime
when subjected to naturalistic stimuli. The results presented
here indicate that this is partially true for pyramidal cells in
the ELL of weakly electric fish as nonlinearities are present
and reduce linear estimates such as the coherence function as
predicted from theory �24�. While this may not seem surpris-
ing at first glance since neurons are intrinsically nonlinear
devices due to voltage-activated ion channels, linear re-
sponse theory was sufficient to at least qualitatively explain
the effects of feedback input to these cells observed in vivo.

Although the integrate-and-fire neuron model lacks a leak
term and other currents, the predictions from the integrate-
and-fire neuron network were in qualitative agreement with
the experimental data. We furthermore note that similar ef-
fects to the ones seen with the integrate-and-fire neuron net-
work can been observed with leaky integrate-and-fire and
Hodgkin-Huxley neuron models although they require more
parameter fitting �data not shown�. Also, the effects of inhibi-
tory feedback on the spike train power spectrum in an infi-

FIG. 10. �a� Comparison between data �black� and the predic-
tion from Eq. �15� �gray� with feedback blocked �i.e., gk=0�. There
is a good qualitative agreement between the two curves. �b� Com-
parison between data �black� and the prediction from Eq. �15� in the
presence of feedback �gray�. The prediction with no feedback is
also shown for comparison �gray squares�. Again, good qualitative
agreement with the data is seen in that the coherence at low fre-
quencies is reduced and that the coherence at high frequencies is
increased �compare with Fig. 8�. Note the quantitative agreement
between the peak of the black and gray lines. Error bars are shown
as a vertical line for the experimental data.
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nite size network observed here are qualitatively similar to
those observed in �7,8� which used leaky integrate-and-fire
neuron models.

The theory showed that the shaping of the coherence and
information density functions occurred through averaging of
the noise. Such noise shaping has been previously studied
with respect to the spectrum of the output spike train in
single neurons �49,50� and in neural nets with recurrent in-
hibition �50,51� as inspired by the electronics literature �52�.
We note that only inhibitory connections with no explicit
delay were taken into account in �51�. In our study, we have
taken into account excitatory and inhibitory feedback with
explicit delays, as well as the linear response of the intrinsi-
cally noisy nonlinear neuron to time-varying inputs. We have
demonstrated that the noise shaping actually extends to the
neural coherence function, and thus to the information
throughput.

The architecture and connectivity of feedback pathways
varies greatly depending on the particular brain area studied.
The framework used here can be applied to an arbitrary num-
ber of neurons and be extended to any connectivity patterns.

The only assumption is that the strength of both the feedback
connections and stimulus be relatively weak and the noise
not too small �25�.

It is known that balanced feedforward excitation and in-
hibition can lead to gain control �53� as well as irregular
firing �54� without affecting the mean firing rate. We have
shown here that balanced feedback excitation and inhibition
could, for physiologically reasonable parameter choices, en-
hance information transfer over certain frequency ranges.
Thus, with balanced feedback excitation and inhibition, a
neuron’s firing rate could remain the same while significantly
changing its information transfer properties.
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