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frequency adaptation is a prominent aspect of neuronal dynamics that
shapes a neuron’s signal processing properties on timescales ranging
from about 10 ms to �1 s. For integrate-and-fire model neurons
spike-frequency adaptation is incorporated either as an adaptation
current or as a dynamic firing threshold. Whether a physiologically
observed adaptation mechanism should be modeled as an adaptation
current or a dynamic threshold, however, is not known. Here we show
that a dynamic threshold has a divisive effect on the onset f–I curve
(the initial maximal firing rate following a step increase in an input
current) measured at increasing mean threshold levels, i.e., adaptation
states. In contrast, an adaptation current subtractively shifts this f–I
curve to higher inputs without affecting its slope. As a consequence,
an adaptation current acts essentially linearly, resulting in a high-pass
filter component of the neuron’s transfer function for current stimuli.
With a dynamic threshold, however, the transfer function strongly
depends on the input range because of the multiplicative effect on the
f–I curves. Simulations of conductance-based spiking models with
adaptation currents, such as afterhyperpolarization (AHP)-type, M-
type, and sodium-activated potassium currents, do not show the
divisive effects of a dynamic threshold, but agree with the properties
of integrate-and-fire neurons with adaptation current. Notably, the
effects of slow inactivation of sodium currents cannot be reproduced
by either model. Our results suggest that, when lateral shifts of the
onset f–I curve are seen in response to adapting inputs, adaptation
should be modeled with adaptation currents and not with a dynamic
threshold. In contrast, when the slope of onset f–I curves depends on
the adaptation state, then adaptation should be modeled with a
dynamic threshold. Further, the observation of divisively altered onset
f–I curves in adapted neurons with notable variability of their spike
threshold could hint to yet known biophysical mechanisms directly
affecting the threshold.

I N T R O D U C T I O N

Adaptation is a common property of many neurons and plays
an important role in neuronal information processing. In par-
ticular, spike-frequency adaptation caused by a variety of
adaptation currents explains, for example, forward masking of
weaker stimuli (Sobel and Tank 1994), enhancement of the
response to fast stimulus components (Benda et al. 2005), or
selective responses to looming stimuli (Peron and Gabbiani
2009). Incorporating an adaptation mechanism in neuron mod-
els for simulations of experimentally observed responses to

dynamical inputs is therefore necessary for capturing the full

functional repertoire of neurons.

The most prominent ionic currents inducing spike-frequency

adaptation are voltage- or calcium-gated potassium currents

(Brown and Adams 1980; Madison and Nicoll 1984; Sah

1996). Similarly, sodium-activated potassium currents also

cause spike-frequency adaptation on much longer timescales

(many seconds; Wang et al. 2003). All these inhibitory potas-

sium currents are activated directly or indirectly during action

potentials. In contrast, slow inactivation of the sodium current

slowly reduces the availability of sodium channels that can be

activated and thus directly reduces the neuron’s excitability

(Fleidervish et al. 1996). Whether there is a unique and generic

way how to extend neuron models, especially integrate-and-

fire models, is a priori not clear, given this diversity of possible

mechanisms for spike-frequency adaptation. Herein we inves-
tigate, in particular, the difference between adaptation mecha-
nisms acting as ionic currents and mechanisms directly influ-
encing the neuron’s firing threshold.

Integrate-and-fire models have a long history as the most
simple models of spiking activity (Lapicque 1907; Stein 1965).
In these models a stimulus and/or noise drive the membrane
voltage toward a firing threshold. Once the threshold is
crossed, a spike is emitted and the voltage is reset. Early
extensions of the integrate-and-fire model introduced a depen-
dence of the firing threshold on the time since the last spike.
With such models experimentally observed variability of in-
terspike intervals (ISIs) (Geisler and Goldberg 1966; Holden
1976; Wilbur and Rinzel 1983) or effects of AHPs (Tuckwell
1978) have been phenomenologically reproduced. However,
the hard reset of both the voltage and the threshold variable
makes cumulative phenomena like spike-frequency adaptation,
which evolve over many ISIs, impossible (Fohlmeister 1979;
Lindner and Longtin 2005).

By cumulatively adding an exponentially decaying AHP to
the membrane voltage after each spike, Geisler and Goldberg
(1966) successfully modeled negative ISI correlations that are
also commonly observed in neural activity (Farkhooi et al.
2009). For simulating spike-frequency adaptation in auditory
nerve fibers Bibikov and Ivanitskíí (1985) used a dynamic
threshold that was incremented by each spike event and that
then decayed back. This concept was reintroduced as a possible
model reproducing spike-frequency adaptation and the associ-
ated negative correlations of successive ISIs (Chacron et al.
2000; Liu and Wang 2001). The latter was shown to increase
the transinformation between a stimulus and the evoked spike
train by reducing low-frequency noise (Chacron et al. 2001,
2005, 2007; Lindner et al. 2005).
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An alternative way for generating spike-frequency adapta-
tion with integrate-and-fire models is to subtract a feedback
variable from the stimulus (Fohlmeister 1979), i.e., add an
adaptation current directly to the membrane equation (Gigante
et al. 2007; Treves 1993). Recently, various types of integrate-
and-fire models with adaptation current have been shown to
reproduce spiking activity of cortical pyramidal cells (Jolivet et
al. 2008; Rauch et al. 2003).

Liu and Wang (2001) compared the two methods—adapta-
tion current and dynamic threshold—for generating spike-
frequency adaptation in integrate-and-fire neurons. They found
subtle differences regarding the dependence of the adaptation
time constant on input current and of the ISI variability on time
after stimulus onset. Here, however, we demonstrate that an
adaptation current has a qualitatively different effect on the
neuron’s transfer function than that of a dynamic threshold.
Our results can therefore be used to distinguish adaptation
mechanisms primarily acting as currents or affecting the firing
threshold.

First, by the example of the leaky integrate-and-fire neu-
ron we show that adaptation modeled by a dynamic thresh-
old has a nonlinear effect on the neuron’s transfer function,
whereas an adaptation current acts linearly. By contrasting
these results with simulations on a number of conductance-
based models with various adaptation currents, we conclude
that only an adaptation current added to an integrate-and-fire
neuron can reproduce the properties of the more realistic
conductance-based model. For the perfect integrate-and-fire
neuron we provide analytical expressions for onset spike
frequency versus input current ( f–I) curves, demonstrating
the divisive effect of the dynamic threshold versus the
subtractive effect of adaptation currents. Averaging theory
allows us to immediately assess the impact of a dynamic
threshold, given an analytical expression for the firing rate
of an integrate-and-fire neuron without any adaptation pro-
cess. Finally, we discuss the two adaptation mechanisms in
both the quadratic (Ermentrout and Kopell 1986) and the
exponential integrate-and-fire neuron (Fourcaud-Trocmé et
al. 2003).

M E T H O D S

All integrate-and-fire models as well as the conductance-based
models were integrated using the Euler-forward method, with time
steps of �t � 0.005 ms or sometimes �t � 0.01 ms. Only for
computing the ISI correlations was a white Gaussian noise �(t) of
intensity D [i.e., with correlation function ��(t)�(t=)� � 2D�(t � t=)]

added to the constant input current. For this, the term �2D⁄�t N(0,
1) was added to the right-hand side of the current balance equation
before applying the standard Euler integration technique, where N(0,
1) is a normally distributed random number that was drawn in each
time step. In all other simulations the models were deterministic.

If not stated otherwise, the standard parameters for the integrate-
and-fire models were membrane time constant �V � 10 ms, firing
threshold Vth � 10 mV, reset potential Vr � 0 mV, input resistance
R � 1 M�, adaptation time constant �A � 100 ms, adaptation strength
�A � 2 nA for adaptation currents, and �A � 2 mV for dynamic
thresholds. The conductance-based models are specified in the
APPENDIX.

Spike frequency as a function of time was obtained by assigning for
each time t (in 1-ms increments) the inverse ISI that contains this time
t. Consequently, the onset spike frequency f0 is the inverse of the first
ISI following the onset of a step input.

To compute the transfer function we stimulated the neuron models
using low-pass filtered white noise. This noise was generated by first
initializing in Fourier space both the real and the imaginary parts of all
frequencies up to the cutoff frequency fc, with independent random
numbers drawn from a Gaussian distribution of zero mean and unit
SD. After fast Fourier back-transformation and division by

�4�tNfc, where N is the number of data points (a power of two),
this results in a smooth curve sampled every �t � 1 ms.

The stimulated spike train in response to the low-pass filtered white
noise stimulus I(t) was converted into a time series r(t) of zeros and
ones with a bin width of 1 ms, where the ones represent the
occurrences of spikes. The gain of the transfer function was then
computed as

g(�) � � � r̃Ĩ*�

� ĨĨ*�
� (1)

where r̃ and Ĩ are mean-subtracted and Fourier-transformed chunks
of the spike train and input, respectively. � Ĩ Ĩ *� is the power spec-
trum of the input current and �r̃ Ĩ *� is the cross-spectrum between input
current and output spike train. The angled brackets �·� denote averaging
over chunks of 220 data points (�5.24288 s @ �t � 0.05 ms) that were
windowed using the Bartlett window function and overlapped by half the
size of a window. For the analysis, the transient initial adaptation during
the first second was discarded from the 10,000 s long simulations to
ensure steady state as required for computing the transfer function.

The serial correlation between successive ISIs was computed from
50,000 or 100,000 simulated ISIs Ti by means of

CISI �
��Ti � �Ti���Ti	1 � �Ti���

��Ti � �Ti��2�
(2)

Here, the angled brackets denote averaging over all ISIs; �Ti� is the
mean ISI.

R E S U L T S

Before we present our results, let us first introduce the leaky
integrate-and-fire (LIF) neuron and its two adapting variants
with adaptation current or dynamic threshold.

Leaky integrate-and-fire neuron

The LIF models a neuron in the subthreshold regime as a linear
membrane with time constant �V and input resistance R. The
dynamics of the membrane potential V in response to the injected
current I(t) that is a predefined function of time t is given by

�V

dV

dt
� �V 	 R · I(t) (3)

Whenever V crosses the threshold Vth, a spike is emitted and V is
reset to the reset potential Vr. Note that throughout this study we
set the resting potential of all integrate-and-fire neurons to zero.

An adaptation current IA � g�Aa(V � EA), with maximum
conductance g�A, gating variable a, and reversal potential Ea,
acts subtractively on the input I

�V

dV

dt
� �V 	 R · �I(t) � gAa(V � EA)� (4)

�A

da

dt
� a
(V) � a (5)

The steady-state activation function a�(V) of the adaptation
current is a sigmoidal function that is zero for low mem-
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brane potentials and increases to one at potentials ideally
well above the spiking threshold. Thus between spikes
a�(V) is close to zero and therefore a decays back to zero
with the adaptation time constant �A. During each spike,
which is not explicitly modeled in the integrate-and-fire
neurons, a�(V) takes on values close to one and a is
therefore incremented, at each spike, by approximately a
fixed amount �a.

Approximating the driving force V � EA by a constant c and
introducing a rescaled adaptation variable A � ag�Ac one gets

�V

dV

dt
� �V 	 R · �I(t) � A� (6)

�A

dA

dt
� �A (7)

On each threshold crossing the membrane potential is again
reset to Vr and, in addition, A is incremented by �A � �ag�Ac
(Benda and Herz 2003). This is the leaky integrate-and-fire
neuron with adaptation current (LIFAC; Liu and Wang 2001).
Examples of the dynamics of the LIFAC and the resulting
spike-frequency adaptation are shown in Fig. 1, A and C.

Alternatively to the adaptation current, a dynamic threshold
also results in spike-frequency adaptation (Chacron et al. 2000;
Liu and Wang 2001). The equation for the membrane voltage
remains exactly that of the original LIF (Eq. 3), but the voltage
threshold—now denoted by A—gets its own dynamics with
the adaptation time constant �A

�V

dV

dt
� �V 	 R · I(t) (8)

�A

dA

dt
� �A 	 Vth (9)

Whenever V crosses the dynamic threshold A, V is reset to Vr

and A is incremented by �A as for the LIFAC. Between the
spikes, A decays back to the minimum threshold Vth. This is the

leaky integrate-and-fire neuron with dynamic threshold
(LIFDT; for an example see Fig. 1, B and D).

Distinct firing properties resulting from either adaptation
currents or dynamic thresholds

Let us first introduce our basic findings on the example of
the leaky integrate-and-fire neuron (LIFAC and LIFDT).

Adapted f–I curves. The input–output relation of a nonadapt-
ing neuron can be well captured by its f–I curve that relates the
spike frequency f to the input current I. However, because of
adaptation processes a description of the neuron’s input–out-
put relation by a single f–I curve is no longer sufficient.
Depending on the current value of the adaptation variable A,
different f–I curves describe the onset response of the neuron to
changes in the input: the adapted f–I curves f0(I, A). A special
case is the onset f–I curve f0(I) for the response of the
unadapted neuron (A � 0). The subscript 0 used for the onset
and adapted f–I curves refers to the onset response measured
right after the onset of the test stimulus I. In addition, there is
the steady-state f–I curve f�(I) describing the maximally
adapted spike frequency for a given fixed input I. The steady-
state response is measured a sufficiently long time after the
constant test stimulus I was switched on (t ¡ �, as indicated
by the subscript). We do not consider other f–I curves that are
measured at intermediate times after stimulus onset, since the
onset and the steady-state f–I curves are sufficient for a com-
plete description of the adaptation dynamics (Benda and Herz
2003).

Such adapted onset f–I curves can be measured by first
setting the input current I(t) to a value I0 for a time much longer
than the adaptation time constant. At the end of this stimulus
the neuron is completely adapted, the neuron fires along with
its steady-state spike-frequency f�(I0), and the adaptation vari-
able has assumed a certain mean value �A� that solely depends
on the value of I0, i.e., �A� � �A�(I0). Then the input current I(t)
is stepped to a test value I and the resulting onset response, i.e.,
the maximum (in the case I � I0) or minimum (I 	 I0) spike

DC

BA
FIG. 1. Spike-frequency adaptation modeled as an adaptation

current or dynamic threshold. A: the time course of the membrane
potential (solid line) of the leaky integrate-and-fire neuron with
adaptation current (LIFAC) in response to the onset of a constant
current I � 26.5 nA (long dashed line) at time t � 0 (I � 0 for t 	
0). The voltage threshold is fixed at Vth � 10 mV (short dashed
line) but the steady-state potential R(I � A) (dotted line) is reduced
by the increasing adaptation current. The approach of the mem-
brane potential is therefore slowed down as indicated by the
dash-dotted lines showing the evolution of the membrane potential
without voltage threshold. B: with a dynamic threshold the steady-
state potential stays constant at RI (long dashed line), but the
threshold is increased by each spike and therefore the membrane
potential needs more time until it reaches the threshold. Input
current was I � 29 nA to evoke the same onset response of about
190 Hz as in the example of the LIFAC. C and D: both mecha-
nisms result in similar adapting spike-frequency responses. The
initially high spike-frequency response (onset spike frequency f0,
which is computed as the inverse of first interspike interval [ISI])
to the onset of the constant stimulus (black bar) gradually decays
down to a lower steady-state spike frequency f�. Spike frequency
at time t is defined as the inverse of the ISI that contains t. The
corresponding spike trains are shown at the top (vertical strokes).
The parameter values used for both LIF models were �V � 10 ms,
Vth � 10 mV, Vr � 0 mV, R � 1 M�, �A � 100 ms, �A � 2 nA
for LIFAC and �A � 2 mV for leaky integrate-and-fire neuron
with dynamic threshold (LIFDT).
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frequency right after the onset of I, is then a point of the
adapted f–I curve f0(I, A). Here �A�(I0) is replaced by A for
simplicity, to indicate that this f–I curve f0(I, A) is the onset
spike frequency evoked by I, given a certain state of adaptation
A, independent of the specific history of the stimulus and the
adaptation dynamics. This also implies that we neglect the
minimal changes of the adaptation variable already induced by
the first spike in response to the test stimulus and the dynamics
during the following ISI (compare the small variations of A
during a single ISI with the large change over the whole course
of the stimulus in Fig. 1, A and B). The whole procedure, i.e.,
adapt to I0 and then measure onset response to I, is repeated for
a range of test currents I, to sample a whole adapted f–I curve
f0(I, A).

The concept of the adapted f–I curves that depend on the
current level of adaptation facilitates an intuitive understanding
of the neuron’s signal transmission properties. Consider an
input containing slow components (period far lower than the
time constant of the adaptation dynamics) as well as much
faster components (faster than the adaptation dynamics). The
level of adaptation will follow the slow input and thus the
adapted f–I curve will change accordingly. In contrast, adap-
tation cannot follow the fast stimulus and therefore a fast
stimulus cannot change the adapted f–I curve. Note that the
instantaneous increase of the adaptation variable on a spike
does not significantly change the adapted f–I curve. As a
consequence, at the peak or trough of the slow input the
adapted f–I curves differ because of the different adaptation
levels and so the response to the faster input will be different
depending on where it occurs with respect to the phase of the
slower signal components.

Adaptation currents have been shown to shift the adapted f–I
curves horizontally to higher inputs (Benda and Herz 2003)
and to linearize the steady-state f–I curve compared with the
onset f–I curve (Ermentrout 1998).

The f–I curves of the LIFAC indeed follow these expecta-
tions (Fig. 2A). For spike frequencies above the steady-state f–I
curve the three adapted f–I curves shown (open triangles)
exactly match the onset f–I curve (open circles) appropriately
shifted to the right (solid lines). Below the steady-state f–I
curve the adapted f–I curves are overestimated because the
initial low spike-frequency response (i.e., long ISI) is prema-

turely terminated by a spike generated when the adaptation
level has substantially recovered, as described in Benda and
Herz (2003). Also, the steady-state f–I curve has a reduced
slope and is fairly linear over the whole range of input currents
and more linear than the onset f–I curve.

In contrast, the adapted f–I curves of the LIFDT show a
prominent reduction in their slope in addition to a small shift
(Fig. 2B). Further, the steady-state f–I curve of the LIFDT is
more curved than that of the LIFAC. Thus it is not linearized
compared with the onset f–I curve in contrast to the LIFAC
model.

Therefore a comparison of the effects of preadaptation on
the f–I curves can indicate whether an adaptation current
(simple shift, no change of slope) or a dynamic threshold
(slope change) should be used to model physiological data.

Transfer functions. Stimulus components that are faster than
the adaptation process are transmitted via the adapted f–I
curve, since adaptation is too slow to follow such a stimulus
and thus the adaptation level stays approximately fixed. Stim-
ulus components that are slower than the adaptation dynamics
are transmitted by the steady-state f–I curve, since there is
enough time for the adaptation mechanisms to fully adapt.
Since generally the slope (gain) of the steady-state f–I curve is
smaller than that of the onset f–I curve, the transfer function
between the stimulus and the resulting spike frequency acts as
a high-pass filter with a cutoff frequency at (2�s�A)�1, where
s is the slope of the steady-state f–I curve divided by that of the
onset f–I curve (Benda and Hennig 2008; Benda and Herz
2003; Benda et al. 2005).

For an illustration of this effect, we computed transfer
functions by stimulating the models with input currents I(t) �
I0 
 ��(t), where I0 � �I� is the mean stimulus, � is a Gaussian
white noise with zero mean, and unit SD that was low-pass
filtered with a cutoff frequency of 16 Hz (see METHODS). The
SD � of the noise was set to the small value of 2 nA to
minimize effects introduced by the nonlinear shapes of the f–I
curves. From the resulting spike response we then computed
the gain of the transfer function (see METHODS).

Both adaptation current and dynamic threshold indeed pro-
duce a high-pass filter component to the neuron’s transfer
function (Fig. 3). In the LIFAC, however, the gain function is
almost independent of the stimulus mean (Fig. 3A), whereas in

BA

FIG. 2. Adaptation current has a subtractive, dynamic threshold a divisive effect on adapted onset spike frequency vs. input current (f–I) curves of leaky
integrate-and-fire (LIF) models. Measuring the onset f0 and the steady-state spike frequency f� (see Fig. 1C) as a function of the input current I results in the
onset f0(I) (open circles) and the steady-state f–I curve f�(I) (filled circles), respectively. Preadapting the neuron to various input currents I(t 	 0) � I0 (here I0 �
20, 30, 40 nA for both models) and thus corresponding states of adaptation A, and then measuring again the onset response to test currents I

(t �0) � I (abscissa) results in adapted f–I curves f0(I, A) (open triangles) for these states of adaptation A. A: the onset and adapted f–I curves of the LIFAC
for different levels of the adaptation current [A(I0) � 10, 17, 24 nA]. The adapted f–I curves (open triangles) clearly match the onset f–I curve (open circles)
shifted to the right such that it crosses each of the adapted f–I curves at a spike frequency of 200 Hz [“shifted f0(I)”, solid line]. B: adapted f–I curves of the
LIFDT for different threshold values [A(I0) � 20, 25, 29 mV]. Clearly, the adapting threshold has a divisive effect on the adapted f–I curves. The dashed lines
are the predictions for the adapted f–I curves from the averaging theory (Eq. 20). Same parameter values as in Fig. 1.

2809ADAPTATION CURRENTS VERSUS DYNAMIC THRESHOLDS

J Neurophysiol • VOL 104 • NOVEMBER 2010 • www.jn.org

 on N
ovem

ber 3, 2010 
jn.physiology.org

D
ow

nloaded from
 



the LIFDT the overall gain as well as the strength of the
high-pass filter is reduced for higher mean inputs (Fig. 3B).

This can be completely understood by the f–I curves
shown in Fig. 2. Since the steady-state f–I curve of the
LIFAC is approximately linear, the gain at low stimulus
frequencies is independent of the mean stimulus. The gain at
high stimulus frequencies is also independent of the mean
stimulus, since the adapted f–I curves are shifted versions of
the onset f–I curves and thus all have the same gain. Only at
low values of mean stimulus does the transfer function
differ slightly from those obtained for stimuli with higher
means because of the nonlinear shapes of the f–I curves
close to input threshold.

With a dynamic threshold, however, the slope of the adapted
f–I curves is reduced compared with the onset f–I curve and the
slope of the steady-state f–I curve decreases for stimuli with
higher mean values. Consequently, the gain of the transfer
function for both fast and slow stimulus components is reduced
for stimuli with higher mean intensities.

The effect of adding a constant offset or bias to a time-varying
stimulus is a second powerful tool for deciding between adapta-
tion currents versus a dynamic threshold. If the gain of the
experimentally observed f–I curves is independent of the input
bias, then an adapting current should be used for modeling. In
contrast, when increasing the input bias diminishes the gain, then
use of a dynamic threshold is indicated.

Negative ISI correlations. In addition to adapting the spike-
frequency response, adaptation induces negative correlations
between the duration of successive ISIs when the neuron is

driven with additive noise that may arise from ion channel
stochasticity or random synaptic input (Chacron et al. 2000;
Liu and Wang 2001; Wang 1998). After a short ISI the neuron
is more strongly adapted and thus the following ISI is more
likely to be longer and vice versa.

Both LIFAC and LIFDT generate similar negative ISI cor-
relations in response to constant inputs with additive white
noise (Fig. 4, A–C). The anticorrelation is largest for spike
frequencies close to, but not identical to, one over the adapta-
tion time constant. At lower firing rates the ISI correlations
diminish, since adaptation decays away before the next spike.
At high firing rates, on the other hand, the change in adaptation
strength from one spike to the other is too small compared with
the high-input currents. Note that with increasing noise
strength the correlations diminish. The corresponding coeffi-
cients of variation (CVs) of the ISI distributions are also
comparable between LIFAC and LIFDT and, for both models,
the CVs are smaller than that of the LIF without adaptation
mechanism (Fig. 4, D–F).

Conductance-based models behave like the LIFAC

The biophysical origins of spike-frequency adaptation are
various types of ionic currents that are activated by spikes and
slowly deactivate between spikes. Prominent examples are
M-type currents (Brown and Adams 1980), AHP-type currents
(Madison and Nicoll 1984; Sah 1996), sodium-activated po-
tassium currents (Wang et al. 2003), or slow inactivation of the
sodium current (Edman et al. 1987; Fleidervish et al. 1996).
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FIG. 3. Transfer functions of the leaky integrate-and-fire
(LIF) models. The gain was computed using low-pass filtered
(0–16 Hz) Gaussian white noise current stimuli with SD 2 nA
and 4 different mean values �I� as indicated. A: for the LIFAC
the gain functions for stimuli with different means are similar.
B: in the LIFDT the overall gain is strongly reduced for higher
mean values of the stimulus. Also, the difference in gain
between high-frequency stimuli (�6 Hz) and low-frequency
stimuli (	0.5 Hz) decreases for increasing �I� (nonlinear com-
pression; note the logarithmic axis for the gain). Same param-
eter values as in Fig. 1.

FED

CBA FIG. 4. Adaptation induces negative ISI correla-
tions. Both leaky integrate-and-fire models with ad-
aptation current (A, D) and dynamic threshold (B, E)
show similar negative correlations between succes-
sive ISIs and coefficients of variation (CVs) of the
ISIs in the steady-state when driven by constant
currents with additive white Gaussian noise �(t) of
intensity D, i.e., ��(t)�(t=)� � 2D�(t � t=). A and
B: the correlation between successive ISIs as a func-
tion of spike frequency and 3 different values of the
noise strength D as indicated. Spike frequency was
varied by means of the constant current. C: a com-
parison of the ISI correlations of the LIFAC and the
LIFDT as a function of the noise strength D and an
input current adjusted such that the resulting spike
frequency was 20 Hz. The inset shows the required
input current in nA, the dashed line the LIF without
adaptation. D and E: the CV of the ISIs correspond-
ing to the data shown in A and B. F: a comparison of
the CVs. Additionally, the CV of the LIF without
adaptation is plotted as the dashed line. Same pa-
rameter values as in Fig. 1.
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M-type currents are slow potassium currents that are activated
during action potentials. AHP-type currents and sodium-acti-
vated potassium currents are both potassium currents that are
instantaneously gated by the intracellular concentration of
calcium and sodium, respectively. The calcium/sodium con-
centration is increased by calcium/sodium influx during each
spike and the slow adaptation dynamics is due to the slow
removal of these ions from the cytoplasm. Whereas adaptation
based on M-type and the AHP-type currents acts on roughly
about 100 ms, adaptation caused by sodium-activated potas-
sium currents is much slower (several seconds). Slow inacti-
vation of the sodium current is a third gating variable of the
spike-generating sodium current that is inactivating the sodium
current on a slow timescale of about a second. Since slow
inactivation of the sodium current is not a separate ionic
current, as are the M-type, AHP-type, and sodium-activated
potassium currents, but rather acts directly on a spike-gener-
ating current, this mechanism potentially behaves like the
leaky integrate-and-fire model with a dynamic threshold. Note,
however, that, formally, the slow inactivation can be separated
from the fast activation and inactivation variables and thus
should also resemble adaptation currents (Benda and Herz
2003). Figure 5 shows simulations of single-compartment
conductance-based models with fast currents that explicitly

generate action potentials and such adaptation currents. Adap-
tation induced by an AHP-type current, M-type current, or a
sodium-activated potassium current clearly shifts the neuron’s
f–I curve to higher input currents (Fig. 5, A–E). No divisive
effect on the f–I curve can be observed.

Also, both AHP-type and M-type adaptation currents in the
Ermentrout (1998) model and the Prescott and Sejnowski
(2008) model with AHP-type current demonstrate the linear-
izing effect of adaptation currents on the steady-state f–I curve
(Fig. 5, A–C). The picture changes with adaptation currents
that are activated at subthreshold membrane voltages, as for
example the M-type current in the Prescott and Sejnowski
(2008) model (Fig. 5D) or the sodium-activated potassium
current in the Wang et al. (2003) model (Fig. 5E). In these
cases, the activation of the adaptation current turns the neurons
into type 2 excitable membranes with a discontinuity in their
f–I curves (Ermentrout et al. 2001; Izhikevich 2000). Although
adaptation currents still shift the adapted f–I curves to higher
input intensities, the steady-state f–I curve is no longer linear-
ized. Instead its threshold is moved to higher intensities.

Adaptation by slow inactivation of the sodium current,
however, behaves in a completely different way (Fig. 5F). The
prominent signature of this type of adaptation is neither a shift
nor a scaling of the adapted f–I curves, but rather the rheobase

FE

DC

BA

FIG. 5. Conductance-based models with adaptation currents
show shifted f–I curves. Plotted are the onset f–I curve (open
circles), adapted f–I curves (open triangles) in comparison with
shifted onset f–I curves (solid lines), and the steady-state f–I

curve (filled circles). A: adaptation caused by an afterhyperpo-
larization (AHP)-type current in the Traub–Miles model modi-
fied by Ermentrout (1998) shifts the neuron’s onset f–I curve to
higher input currents (I0 � 10, 20, 30 
A/cm2). B: an M-type
current in the Ermentrout model (Ermentrout 1998) shifts the
adapted f–I curves in a similar way (I0 � 10, 20, 30 
A/cm2).
C: like the AHP-type current in the modified Morris–Lecar
model by Prescott and Sejnowski (2008) (I0 � 40, 50, 60

A/cm2). D: however, the M-type current in the Prescott model
(Prescott and Sejnowski 2008) is already activated by sub-
threshold voltages and therefore induces type 2 excitability that
is visible as the initial steps in the f–I curves. Still, at high spike
frequencies, activation of the M-type current by spiking activity
shifts the onset f–I curve to the right (I0 � 40, 50, 60 
A/cm2).
E: a sodium-activated potassium current in a model of neurons
in the primary visual cortex (Wang et al. 2003) also shifts the f–I

curves (I0 � 10, 20, 30 
A/cm2). Here, the adaptation current is
very strong and therefore brings the steady-state f–I curve close
to zero. For input currents above I � 27 
A/cm2 the adapted
and the steady-state f–I curves match. F: adaptation evoked by
slow inactivation of the sodium current behaves in a different
way in that it mainly shifts the rheobase current to higher values
and only weakly affects the f–I curves where they are nonzero
(I0 � 4, 6, 8, 10 nA). The example, a model of a lobster stretch
receptor neuron (Edman et al. 1987), shows a mild divisive
effect on the adapted f–I curves. The completely adapted neuron
always ceases firing [f�(I) � 0 @ I]. See APPENDIX for model
specifications.
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of the f–I curve is moved rightward, whereas the shape of the
nonzero part of the f–I curve is only mildly affected. As a
result, the continuous onset f–I curve with arbitrary low spike
frequencies displays a growing discontinuity with stronger
adaptation. This is a clear signature of a change from type 1 to
type 2 excitability, which is not unexpected given that the slow
sodium inactivation gating variable is already activated at
subthreshold potentials and effectively decreases sodium con-
ductance, which is a major determinant of spike generation
(Ermentrout et al. 2001). Type 1 excitable membranes undergo a
saddle-node bifurcation and are able to fire with arbitrary low
rates, whereas type 2 membranes can fire only with nonzero
frequencies as caused by the underlying Hopf bifurcation
(Izhikevich 2000). In addition, with increasing sodium inactiva-
tion the current at which the cell goes into depolarization block
moves to lower values [see f0(I, 3.8 nA) curve in Fig. 5F].

The switch from type 1 to type 2 excitability that might be
induced by activation of adaptation mechanisms (Fig. 5, D–F) is
a phenomenon affecting the neuron close to its input threshold.
Here (steady-state) spike frequencies are low and adaptation
dynamics cannot be separated from the spike generator. In the
remainder of this report we focus on the high firing rate regimes,
where the two dynamics can be separated (spike frequency �1
over the adaptation time constant, i.e., in many cases �10 Hz). An
investigation of the interaction between adaptation mechanisms
and the excitability type will be published elsewhere (see also
Ermentrout et al. 2001; Prescott and Sejnowski 2008).

As expected from the f–I curves the transfer functions resulting
from AHP-type currents or M-type currents are high-pass and are
largely independent of the mean current (Fig. 6). Deviations
between the transfer functions can be attributed to possible non-
linear shapes of the onset and steady-state f–I curves.

Similar to our results for both the LIFAC and LIFDT (Fig.
4), AHP-type and M-type adaptation currents induce negative
ISI correlations in the presence of additive white current noise
(Fig. 7). However, strong anticorrelations extend over a larger
range of spike frequencies and the minimum occurs at a
frequency greater than the reciprocal of the adaptation time

constant (12.5 Hz for the AHP-type adaptation; 10 Hz for the
M-type adaptation).

These simulations suggest that adaptation currents in con-
ductance-based models with type 1 excitability could also be
modeled as an adaptation current in the leaky integrate-and-fire
model. In case an adaptation current switches a neuron to type
2 excitability, neither an adaptation current nor a dynamic
threshold in an integrate-and-fire neuron can reproduce the
properties of such conductance-based models at low spike
frequencies. Note that regular-spiking pyramidal cells show
both type 1 properties as well as spike-frequency adaptation
and thus can be modeled with integrate-and-fire models with
adaptation current (Jolivet et al. 2008; Rauch et al. 2003),
whereas fast-spiking interneurons display type 2 f–I curves and
much less adaptation (Tateno et al. 2004). In the following we
investigate the effects of adaptation current and dynamic
threshold in other types of integrate-and-fire neurons.

Perfect integrate-and-fire neuron

The perfect integrate-and-fire neuron (PIF) is the simplest of
the family of integrate-and-fire models. At the same time it is the
canonical model for limit cycle oscillations, i.e., all spiking-
neuron models converge to the PIF at sufficiently high firing rates.
This is exactly the regime we are focusing on in the following,
i.e., on superthreshold spiking, where the ISIs are much shorter
than the adaptation time constant.

The PIF integrates the input current independently of the
membrane voltage

�V

dV

dt
� RI (10)

As for the LIF, a spike is emitted and V is reset to Vr whenever
V crosses the threshold Vth.

In the following we calculate the adapted f–I curves for the
PIF with adaptation current (PIFAC) and with dynamic thresh-
old (PIFDT) directly from the time courses of the membrane

BA FIG. 6. High-pass filter properties of type 1 conductance-
based models with adaptation currents. Shown is the gain
computed for low-pass filtered (16 Hz) Gaussian white noise
current with SD 2 
A/cm2 and 4 different mean values �I�, as
indicated for the Ermentrout model (Ermentrout 1998) with an
additional AHP-type current (A) or M-type current (B). In both
cases the gain at low stimulus frequencies is independent of the
mean intensity of the stimulus because the steady-state f–I curve
is a linear function of I (see Fig. 5, A and B). Differences at high
frequencies can be attributed to the nonlinear shape of the
adapted f–I curves, resulting in different slopes at the intersec-
tions with the steady-state f–I curve with increasing mean of the
stimulus and thus adaptation strength.

BA

FIG. 7. Both the AHP-type current (A) and the M-type
current (B) in the Ermentrout model (Ermentrout 1998) result in
similar negative ISI correlations as a function of spike fre-
quency and noise strength D of the additive Gaussian white
noise given in 
A · cm�2 · Hz�1. The noise strength was chosen
to result in CVs comparable to those in Fig. 4D. The negative
correlations are strongest for weak noise strengths and peak at
spike frequencies between 20 and 50 Hz. At higher as well as
lower spike frequencies the correlations vanish.
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potential and the adaptation variable, to make more general
statements about the subtractive and divisive aspects of the
different kinds of adaptation mechanisms.

Adaptated f–I curve of the PIF with adaptation current. The
differential equations for the membrane voltage V and the
adaptation current A of the PIF with adaptation current (PI-
FAC) are the same as those for the LIFAC (Eqs. 6 and 7),
except for the missing leak term �V.

Let us assume that there was a spike at time t � 0. Then the
membrane potential is at V(0) � Vr and the adaptation variable
has some value A(0) � A � 0. As long as there is no further
spike, according to the dynamics (Eq. 7) the adaptation current
A(t) decays back to zero with time constant �A

A(t) � Ae�t⁄�A (11)

Then, for I � const the solution of the voltage dynamics is

V(t) �
R

�V

�It 	 A�A(e�t⁄�A � 1)� 	 Vr (12)

The next spike is emitted at t � T when V(t) crosses the
threshold Vth. For ISIs T that are small compared with the
adaptation time constant �A, exp(�T/�A) can be approximated
by 1 � T/�A. We then get for the adapted f–I curve

f0(I, A) �
1

T
�

R(I � A)

�V(Vth � Vr)
(13)

The current state of adaptation A is simply subtracted from the
input and therefore the adaptation current shifts the f–I curve of

the PIFAC to the right without changing its shape (Fig. 8A).
Consequently, the transfer function of the PIFAC is a high-pass
filter that is independent of the mean current stimulus (Fig. 8C).

Adapted f–I curve of the PIF with dynamic threshold. Here,
the solutions for the membrane potential (Eq. 8 without leak
term �V) and the dynamic threshold A(t) (Eq. 9) are indepen-
dent of each other

V(t) �
R

�V

It 	 Vr (14)

A(t) � (A � Vth)e�t⁄�A 	 Vth (15)

At the first passage time t � T the voltage crosses the threshold
and thus V(T) � A(T). We must again approximate exp(�T/�A)
by 1 � T/�A and end up with the following expression for the
adapted f–I curve

f0(I, A) �
1

T
�

RI

�V(A � Vr)
	

1

�A
	1 �

Vth � Vr

A � Vr

 (16)

In the first term the current level of adaptation A (i.e., the
current state of the voltage threshold) has a divisive effect on
the resulting adapted f–I curve. The second term is always
positive and it approximates 1/�A for large A. The linear
approximation of the dynamics of the adapting threshold,
however, underestimates the adaptation strength at the thresh-
old crossing of the following spike. Therefore Eq. 16 overes-
timates the spike frequency (Fig. 8B, dotted line).

Because of this divisive effect of the current state of adap-
tation on the f–I curve, the transfer function strongly depends

FE

DC

BA

FIG. 8. Properties of the adapting perfect integrate-and-fire
(PIF) models. A: the onset f–I curve (open circles) and the
adapted f–I curves (open triangles) of the PIFAC for different
levels of the adaptation current (A � 7.7, 14, 21 nA). The solid
lines are the onset f–I curve shifted on top of the adapted f–I

curves so that they intersect at a spike frequency of 200 Hz. The
dashed lines are the predictions from the direct calculation (Eq.

13). The steady-state f–I curve is denoted by the filled circles.
B: onset and adapted f–I curves of the PIFDT for different
threshold values (A � 21, 27, 31 mV). The dashed lines are the
predictions from the direct calculation (Eq. 16) and the averaging
theory (Eq. 18). C: the gain functions of the PIFAC computed for
low-pass filtered (16 Hz) Gaussian white noise current stimuli with
SD 2 nA are independent of their mean �I�, since the slope of the
f–I curves is independent of the input current. The vertical dotted
line here and in the next panel mark the frequency (2��A)�1. The
cutoff frequency of the high-pass filter caused by the adaptation
current, however, is higher by a factor given by the relative slopes
of the onset and the steady-state f–I curves (here �3; Benda and
Herz 2003). D: in contrast, the gain of the PIFDT is decreased for
higher mean values of the stimulus, since the slopes of both the
onset and the steady-state f–I curves are reduced by the dynamic
threshold. E: the ISI correlations as a function of the noise strength
D of the PIFDT are close to zero and much smaller than those of
the PIFAC. The input current was adjusted to result in a firing rate
of 20 Hz (see inset in F). F: the corresponding CVs, on the other
hand, are almost identical and only slightly smaller than the CVs of
the PIF without adaptation mechanism. The parameter values of
the 2 PIF models were �V � 10 ms, Vth � 10 mV, Vr � 0 mV, R �
1 M�, �A � 100 ms, and �A � 2 nA (PIFAC) or �A � 2 mV
(PIFDT).
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on the mean of the current stimulus (Fig. 8D). The higher the
input current, the lower the gain and the less pronounced the
high-pass filter.

Interspike-interval correlations. Whereas for the LIF the
negative correlations between successive ISIs were similar for
both LIFAC and LIFDT, the PIFDT generates much weaker
ISI correlations than the PIFAC (Fig. 8E). For the PIFDT the
slope of even only weakly adapted f–I curves is similar to the
slope of the steady-state f–I curve at a given mean stimulus
intensity, showing that the adapting threshold has only a weak
influence on the length of ISIs. This is in accordance with the
weak high-pass filter component of the corresponding transfer
function mentioned earlier. Therefore additive noise can gen-
erate only weak negative ISI correlations in the PIFDT because
the effect of this noise on the adaptation dynamics is much
smaller in the PIFDT than that in the PIFAC. Note, however,
that the variability of the ISIs measured as the CV is almost
identical in both models (Fig. 8F).

In contrast to the PIFDT, where the adapted f–I curves are
perfectly scaled down and originate all at rheobase, the divi-
siveness of adaptation in the LIFDT acts on the current axis
(see Eq. 20 in the following text), resulting in stronger gain
differences between adapted and steady-state f–I curves (Fig.
2B). Thus adaptation in the LIFDT still has a significant effect
on ISIs and thus generates negative ISI correlations similar to
the LIFAC.

Averaging theory

An alternative way for calculating the adapted f–I curves is
to separate the fast dynamics of the membrane voltage from the
slower dynamics of the adaptation current or the dynamic
threshold. Then one can average over the slower adaptation
dynamics and solve the voltage dynamics for the averaged and
fixed adaptation variable (Benda and Herz 2003; Ermentrout 1998;
Fohlmeister 1979; Wang 1998). This approach assumes again that
the ISIs are short compared with the adaptation time constant.

For the models with adaptation current this is quite simple.
If we know the f–I curve of the model without adaptation
current, that is the onset f–I curve f0(I), then the adapted f–I
curve simply reads f(I, A) � f0(I � A), since the adaptation
current A is directly subtracted from the input I in the voltage
dynamics. For the LIFAC this was derived by Fohlmeister
(1979). Thus adaptation currents shift the neurons to higher
input currents. This is a very general result for any kind of
neuron model, as was shown by Benda and Herz (2003).

In the case of a dynamic threshold we need to know how the
f–I curve of the model depends on the voltage threshold. For
example, the f–I curve of the perfect integrate-and-fire neuron
(Eq. 10) reads

fPIF(I) �
RI

�V(Vth � Vr)
(17)

Thus with a dynamic threshold Vth: � A and Vr � 0 we get for
the adapted f–I curves of the PIFDT

fPIF(I, A) �
RI

�VA
(18)

(dashed lines in Fig. 8B), which for high firing rates is indeed
a good approximation of the adapted f–I curves. In Eq. 18 the

dynamic threshold has a purely divisive effect on the f–I curve.
Note also that Eq. 18 is the first term of the direct solution (Eq.
16) we derived earlier.

The f–I curve of the LIF reads

fLIF(I) � ���V ln 	RI � Vth

RI � Vr

��1

(19)

Again, for the LIFDT with Vth: � A and Vr � 0 we get for the
adapted f–I curve

fLIF(I, A) � ���V ln 	1 �
A

RI

��1

(20)

The dynamic threshold acts divisively on the input current I
and thus stretches the f–I curve along the current axis (dashed
lines in Fig. 2B).

Quadratic integrate-and-fire neuron

The quadratic integrate-and-fire neuron (QIF; Ermentrout
1996; Ermentrout and Kopell 1986; Fourcaud-Trocmé et al.
2003; Latham et al. 2000; Lindner et al. 2003) is the canonical
model for a type 1 neuron, where periodic firing occurs through
a saddle-node bifurcation (Ermentrout 1996; Rinzel and Er-
mentrout 1998). The dynamics of the membrane voltage obeys

�V

dV

dt
�

V2

2�T

	 RI (21)

where �T is the spike slope factor (Fourcaud-Trocmé et al.
2003). Calculating the f–I curve of the QIF for arbitrary spiking
threshold and reset yields

fQIF(I) � 	 1

�V�2�T



�
 �RI

arctan
Vth

�2�TRI
� arctan

Vr

�2�TRI
� (22)

As expected, the QIF with an adaptation current (QIFAC; I ¡

I � A) shifts adapted f–I curves to higher input currents and
linearizes the steady-state f–I curve (Fig. 9A).

For Vth � � and Vr � ��, the usual values for the canonical
form, the f–I curve of the QIF is a square-root function of the
input

lim
Vth�


Vr��


fQIF(I) �� 2

�T

�RI

��V

(23)

In this case, a dynamic threshold would not be able to generate
any spike-frequency adaptation, since it does not matter
whether the infinite threshold is further increased by each
spike. Thus only for finite values of the threshold is the QIF
with dynamic threshold (QIFDT) able to produce adapting
responses. To get notable effects, the threshold must be quite
low. The temporal derivative of the membrane potential
quickly gets very large due to the quadratic term, so that
changes in the threshold translate into tiny changes of the ISI.
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For finite threshold and reset values and high-input values
the f–I curve becomes linear and converges to the one of the
PIF

lim
I�


fQIF(I) �
1

�V

RI

Vth � Vr

(24)

Thus also for the QIFDT the dynamic threshold Vth ¡A(t) has
a divisive effect on the adapted f–I curves (Fig. 9B). At
high-input currents, the dynamic threshold hardly generates
spike-frequency adaptation because the fixed threshold incre-
ments �A are increasingly less effective in altering the spike
frequency.

Since the dynamic threshold has such a small influence on
the adaptation behavior of the QIFDT it is not surprising that
the QIFDT hardly generates any negative ISI correlations when
driven with white noise stimuli. The QIF with adaptation
current (QIFAC), on the other hand, shows negative ISI cor-
relations very similar to those of the LIFAC (data not shown).

Exponential integrate-and-fire neuron

The exponential integrate-and-fire neuron is a modification
of the QIF with a linear subthreshold dynamics (Fourcaud-
Trocmé et al. 2003). The exponential term in the voltage
dynamics

�V

dV

dt
� �V 	 �Te(V�VT)⁄�T 	 RI (25)

simply mimics the spike-generating currents in conductance-
based spiking models. VT plays the role of the voltage threshold
for spiking and the spike slope factor �T determines the
sharpness of the firing threshold. Together with the leak term a
minimum is formed that resembles the quadratic form of the
QIF. Thus the EIF also models type 1 excitability. As usual,
Eq. 25 is integrated until V crosses Vth, which usually equals �.
Then a spike is emitted and integration is restarted at V � Vr,
which is assumed to reflect a realistic reset potential.

With an adaptation current the EIFAC shows shifted f–I
curves, as expected (Fig. 10A). A dynamic threshold Vth ¡ A
is able to produce some spike-frequency adaptation for only
very low values of Vth (Fig. 10C), as was the case for the
QIFDT. However, the effective voltage threshold for firing is

given by the threshold parameter VT and not by Vth. Making
this threshold adaptive we get

�V

dV

dt
� �V 	 �Te(V�A)⁄�T 	 RI (26)

�A

dA

dt
� �A 	 VT (27)

the EIF with adaptive threshold (EIFAT). Equivalent to the
LIFDT, the EIFAT again generates adapted f–I curves that get
less steep with increasing adaptation strength (Fig. 10E). This
divisive effect is not surprising, since in the limit for very sharp
spike initiation (i.e., �T ¡ 0), the EIFAT resembles the
LIFDT.

Equivalently, for the QIF in the superthreshold regime the effec-
tive voltage threshold for firing is at the minimum of the quadratic
function. This threshold can be made adaptive in the same way as
for the EIFAT (Eqs. 26 and 27). For the standard threshold and
reset voltages at 
� and ��, respectively, such a QIFAT
obviously does not show any adaptation. Only for values of Vr

close to the threshold voltage VT does the adaptive threshold
have a divisive effect on the onset f–I curves, very similar to
the dynamic threshold shown in Fig. 9B (not shown).

With respect to the ISI correlations the EIF models behave
similarly to the QIF models. An adaptation current clearly
generates negative ISI correlations (Fig. 10B), as in the other
integrate-and-fire models with adaptation currents. Since a
dynamic threshold is hardly able to produce spike-frequency
adaptation in the EIFDT the ISI correlations are also close to
zero for all input currents (Fig. 10D). The adapting threshold
parameter of the EIFAT is again able to induce negative ISI
correlations (Fig. 10F).

D I S C U S S I O N

Although at first glance integrate-and-fire models augmented
with either an adaptation current or a dynamic threshold
reproduce spike-frequency adaptation equally well (Fig. 1),
they significantly differ in their signal processing properties.
Based on the concept of “adapted f–I curves,” i.e., onset f–I
curves measured for various but fixed levels of adaptation, we
have demonstrated by simulations and analytics that an adap-
tation current shifts the adapted f–I curves to the right (Benda
and Herz 2003), whereas a dynamic threshold has a divisive

BA

FIG. 9. A dynamic threshold has a small divisive effect in quadratic integrate-and-fire (QIF) models. A: the onset (open circles) and adapted f–I curves (open
triangles) of the QIFAC for different levels of the adaptation current (A � 9.5, 17, 24 nA). The solid lines are the onset f–I curve shifted on top of the other
f–I curves so that they intersect at a spike frequency of 200 Hz. The dashed lines are the predictions from the averaging theory using Eq. 22 and replacing I by
I � A. The steady-state f–I curve is denoted by the filled circles. B: onset f–I curves of the QIFDT for different threshold values (A � 11, 14, 17 mV). The dashed
lines are the predictions from the averaging theory based on Eq. 22 and replacing Vth by the dynamic threshold A (Eq. 9). The parameter values were �V � 10
ms, Vth � 2 mV, Vr � �8 mV, �T � 1 mV, R � 1 M�, �A � 100 ms, and �A � 2 nA (QIFAC) or �A � 2 mV (QIFDT).
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effect on these onset f–I curves. This is one fingerprint of the
primarily linear characteristics of an adaptation current and the
nonlinear characteristics of a dynamic threshold. A further
aspect is the independence of the high-pass filter component of
the neuron’s transfer function from the mean of the stimulus,
and thus adaptation level, in the models with adaptation cur-
rent, whereas with a dynamic threshold the properties of the
high-pass filter strongly depend on stimulus mean.

The high-pass filter property associated with both the spike-
frequency adaptation and the subtractive effect on adapted f–I
curves has been experimentally shown to play an important
role in enhancing the response to fast components of commu-
nication signals in weakly electric fish (Benda et al. 2005) or to
generate intensity-invariant responses in the auditory system of
crickets (Benda and Hennig 2008). Here we have shown by
simulations of a range of conductance-based models that ad-
aptation currents indeed have a subtractive effect on adapted
f–I curves and generate a high-pass filter that is independent of
the mean intensity of a stimulus. These simulations therefore
strongly suggest that spike-frequency adaptation caused by
adaptation currents should be modeled as adaptation currents in
integrate-and-fire neurons and not as a dynamic threshold.

Note that we have focused here on the dynamic effects of the
adaptation variable (current or threshold) on the transient onset
response to current steps while keeping all parameter values
constant. These onset or adapted f–I curves determine the
signal-transmission properties of high-frequency stimulus
components that are considerably faster than the adaptation
time constant. On the other hand, numerous studies have

investigated how changes in model parameters, like the adap-
tation strength (here �A, or more generally the strength of
some inhibitory feedback) or noise intensity, influence the
shape of the steady-state f–I curve. In particular, with or
without noise, the adaptation strength acts divisively on this
steady-state f–I curve in both adaptation current and dynamic
threshold models (see Sutherland et al. 2009 and references
therein). Adaptation currents tend to linearize the steady-state
f–I curve compared with the onset f–I curve or the steady-state
f–I curve of the corresponding neuron without adaptation (zero
adaptation strength) (Benda and Herz 2003; Ermentrout 1998).
In contrast, herein we report that the steady-state f–I curves of
the models with dynamic threshold are more concave (right-
ward curved) than the f–I curve of the model without adapta-
tion.

Negative correlations between successive ISIs have been
observed in many sensory as well as cortical neurons (for a
review, see Farkhooi et al. 2009). In electroreceptor neurons of
weakly electric fish they have been studied in great detail
(Ratnam and Nelson 2000), mainly by means of a leaky
integrate-and-fire model with dynamic threshold (Chacron et
al. 2000). The negative ISI correlations improve information
transmission (Chacron et al. 2001) by reducing low-frequency
noise (Chacron et al. 2005; Lindner et al. 2005). In all these
studies, however, the underlying adaptation mechanisms have
not been elucidated. Later, Benda et al. (2005) measured a
subtractive effect of adaptation on f–I curves of the electrore-
ceptor neurons that, in the light of our results, suggests an
adaptation current, not a dynamic threshold, in these neurons.

F

D

B

E

C

A

FIG. 10. Adaptation in 3 types of exponential integrate-and-
fire (EIF) models. A, C, and E: the onset (open circles), adapted
(open triangles), and steady-state (filled circle) f–I curves. The
solid lines are the onset f–I curve shifted on top of the adapted
f–I curves so that they intersect at a spike frequency of 100 Hz.
B, D, and F: ISI correlations of the EIFs driven by constant
currents with additive white noise of strength D as indicated. A

and B: the EIF with adaptation current I ¡ I � A for different
levels of the adaptation current (A � 4.0, 9.4, 14, 19 nA) shifts
the adapted f–I curves to the right and generates negative ISI
correlations. C and D: the EIF with dynamic threshold Vth ¡ A

for different threshold values (A � 12, 20, 30, 38 mV) barely
generates spike-frequency adaptation as well as ISI correlations.
E and F: the EIF with adapting threshold parameter VT ¡ A for
different threshold values (A � 14, 19, 23, 26 mV) has a
divisive effect on the adapted f–I curves, but still shows negative
ISI correlations. The parameter values were �V � 10 ms, Vth �
200 mV (EIFAC, EIFAT) or Vth � 12 mV (EIFDT), Vr � 0 mV,
�T � 4 mV, VT � 10 mV, R � 1 M�, �A � 100 ms, and �A �
2 nA (EIFAC) or �A � 2 mV (EIFDT, EIFAT).
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Nevertheless, both a dynamic threshold and an adaptation
current are able to induce negative ISI correlations in the leaky
integrate-and-fire neuron (Fig. 4; Liu and Wang 2001). There-
fore the conclusions on the effect of negative ISI correlations
on information transmission should be independent of the
specific adaptation mechanism. However, here we show that in
the perfect, the quadratic, and the exponential integrate-and-
fire neuron negative ISI correlations are much weaker with a
dynamic threshold than an adaptation current. This demon-
strates that an adaptation current generates ISI anticorrelations
more robustly, i.e., independently of the specific dynamics of
the spike generator, than a dynamic threshold. Our simulations
suggest that, for a given input current, the maximum strength
of the ISI anticorrelations reflects the effectiveness of the
adaptation mechanism and that this can be experimentally
assessed by the relative slopes of the corresponding adapted f–I
curve and the steady-state f–I curve. The more similar these
two slopes are, the less effective is the adaptation mechanism
and the less the neuron adapts and is able to generate ISI
correlations.

In a previous comparison, only quantitative differences were
reported between LIFAC and LIFDT (Liu and Wang 2001).
Lindner and Longtin (2003) indeed derived a mapping of the
leaky integrate-and-fire neuron with dynamic threshold to that
with an adaptation current, further supporting the strong sim-
ilarity between these two models. However, the mapped dy-
namic-threshold model includes scaling factors for the input
current as well as the adaptation current that depend on the
mean adaptation level. These scaling factors introduce the
divisiveness of the dynamic threshold that we report herein.
Thus as long as the mean adaptation level is approximately
constant, both models behave similarly. However, as soon as
strong low-frequency stimuli significantly drive the adaptation
dynamics, the mean adaptation level changes and the two
models show qualitatively distinct properties.

Here we have focused on the effects of adaptation mecha-
nisms on the superthreshold firing regime, where the ISIs are
shorter than the adaptation time constant. This allowed us to
average over the slow adaptation dynamics (Benda and Herz
2003; Ermentrout 1998; Fohlmeister 1979; Wang 1998) and to
derive expressions for the adapted f–I curves. However, as our
simulations of conductance-based models show, adaptation
currents that are already activated by subthreshold voltages
(Fig. 5, D–F) often turn a type 1 neuron with a continuous f–I
curve into a type 2 neuron with a discontinuity in its f–I curve
(Ermentrout et al. 2001; Prescott and Sejnowski 2008). Such
subthreshold-activated adaptation currents have been incorpo-
rated in integrate-and-fire models by adding a linear depen-
dence on the membrane potential to the adaptation current’s
activation function (Brette and Gerstner 2005; Izhikevich
2003), as was already done for modeling accommodation (Hill
1936). These two-dimensional models can describe a wide
variety of firing patterns, including spike-frequency adaptation,
bursting, subthreshold, and oscillations, for example (Izhikev-
ich 2004; Naud et al. 2008), and can reproduce the dynamics of
a detailed conductance-based model (Brette and Gerstner
2005) as well as experimental data (Jolivet et al. 2008).

Voltage traces of intracellularly recorded adapting neurons
sometimes show an increasing firing threshold during the
course of spike-frequency adaptation in accordance with the
models with dynamic threshold (see, e.g., Mason and Larkman

1990; Figs. 4, A and B and 7, A and B or Chacron et al. 2007;

Fig. 2). However, intrinsically generated adaptation is thought

to be primarily based on adaptation currents, like the M-type

(Brown and Adams 1980) or AHP-type currents (Madison and

Nicoll 1984). These slow ionic currents modulate the dynamics
of fast spike-generating processes (Benda and Herz 2003;
Ermentrout 1998; Wang 1998) and therefore may also induce
the observed changes in firing threshold. In agreement with our
results this suggests that a dynamic firing threshold is not
causing spike-frequency adaptation, but rather is a secondary
effect resulting from the action of an adaptation current.
Therefore we strongly suggest modeling spike-frequency ad-
aptation in integrate-and-fire models as a (simplified) adapta-
tion current that is causing the spike-frequency adaptation and
not as a dynamic threshold.

In this sense, to our knowledge, no biophysical mechanism is
known that primarily modulates a neuron’s firing threshold on
timescales larger than tens of milliseconds as in the integrate-and-
fire models with dynamic threshold discussed here. This does not
exclude that adaptation currents, like M-type or AHP-type cur-
rents, or sodium-activated potassium currents, might affect the
neuron’s firing threshold. Also, our simulations demonstrate that
slow inactivation of sodium currents, as the most promising
known mechanism for resembling the properties of integrate-and-
fire neurons with dynamic threshold, increases the rheobase and
produces abrupt jumps in spike frequency at rheobase, but only
slightly changes the slope of the f–I curve (Fig. 5F). This behavior
differs from the divisive effect of a pure dynamic threshold on the
neuron’s adapted f–I curves.

Chacron et al. (2007) suggested a hypothetical dynamic half-
activation and half-inactivation voltage of the sodium current and
demonstrated that this mechanism generates threshold variability
and negative ISI correlations. In this model this threshold dynam-
ics indeed has a divisive effect on adapted f–I curves (not shown),
in accordance with our results. Azouz and Gray (2000) previously
reported threshold fluctuations in cortical cells, although it is not
known whether they are produced by the proposed biophysical
mechanism reported by Chacron and colleagues; it would there-
fore be of interest to investigate the effect of preadaptation on f–I
curves in these neurons.

Our results emphasize that there is a functional difference
between potential mechanisms that directly operate on the
neuron’s firing threshold and mechanisms, like ionic currents,
that might only secondarily affect the threshold. To distinguish
these two cases in a neuron showing threshold fluctuations, we
suggest measuring adapted f–I curves. If the threshold variabil-
ity is only a byproduct of an adaptation current then the
adapted f–I curves should be shifted along the current axis. If,
on the other hand, a yet unknown mechanism directly modu-
lates the firing threshold then it should reveal itself by a
divisive effect on the f–I curves.

A P P E N D I X

Specifications of conductance-based models

Here we specify the equations and parameters of the conductance-
based models used for the simulations shown earlier in Figs. 5, 6, and
7. Implementations of the models in C

 can be obtained from
the RELACS electrophysiological data-acquisition framework at
www.relacs.net in the files spikingneuron.h and spikingneuron.cc
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of the ephys plugin set (classes TraubErmentrout1998; MorrisLe-
carPrescott, WangIKNa, and Edman).

ERMENTROUT MODEL. The Ermentrout model is a one-compartment
version of the Traub–Miles model, as introduced by Ermentrout
(1998). The membrane equation for the membrane potential V (mea-
sured in mV) reads

C
dV

dt
� �INa � IK � IL � ICa � IM � IAHP 	 I

with the voltage-gated sodium current INa � g�Nam3h(V � ENa),
voltage-gated potassium current IK � g�Kn4(V � EK), leak current
IL � g�(V � EL), voltage-gated calcium current ICa � g�Ca{1 

exp[�(V 
 25)/5]}�1(V � ECa), M-type current IM � g�Mw(V � EK),
and AHP-type current IAHP � g�AHP[Ca](30 
 [Ca])�1(V � EK). The
kinetics of the gating variables x � m, h, n obeys

dx

dt
� �x(1 � x) � �xx

with �m � 0.32(V 
 54)/{1 � exp[�(V 
 54)/4]}, �m � 0.28(V 

27)/{exp[(V 
 27)/5] � 1}, �h � 0.128 exp[�(V 
 50)/18], �h �
4/{1 
 exp[�(V 
 27)/5]}, �n � 0.032(V 
 52)/{1 � exp[�(V 

52)/5]}, �n � 0.5 exp[�(V 
 57)/40]. The kinetics of w of the M-type
current follows

�w

dw

dt
�

1

1 	 exp��(V 	 20) ⁄ 5�
� w

and that for the intracellular calcium concentration [Ca] (in mM) reads

d�Ca�
dt

� �0.002ICa � 0.0125[Ca]

Values of the conductances are g�Na � 100 mS/cm2, g�K � 80 mS/cm2,
g�L � 0.1 mS/cm2, g�Ca � 1 mS/cm2, g�M � 16 mS/cm2, g�AHP � 30
mS/cm2; the reversal potentials are ENa � 
50 mV, EK � �100 mV,
EL � �67 mV, ECa � 
120 mV; the membrane capacitance is C �
1 
F/cm2; and the time constant of the M-type current gating variable
�w � 100 ms.

For the model with AHP-type current (Figs. 5A, 6A, and 7A) we
set g�M � 0 and for the model with M-type current (Figs. 5B, 6B,
and 7B), g�AHP � 0.

PRESCOTT MODEL. The Prescott model is the Morris–Lecar model
extended by an adaptation current IA (Prescott and Sejnowski 2008).
The membrane equation for the membrane potential V (measured in
mV) reads

C
dV

dt
� �ICa � IK � IL � IA 	 I

with the calcium current ICa � g�Ca{1 
 exp[�2(V 

1.2)/18]}�1(V � ECa), potassium current IK � g�Kw(V � EK), leak
current IL � g�L(V � EL), and adaptation current IA � g�Az(V � EK).
The kinetics of the gating variables w and z is given by

1

0.15 cosh �0.5V ⁄ 10)

dw

dt
�

1

1 	 exp(�2V ⁄ 10)
� w

�A

dz

dt
�

1

1 	 exp��(V � VA) ⁄ 4�
� z

Values of the conductances are g�Ca � 20 nS, g�K � 20 nS, g�L � 2 nS;
the reversal potentials are ECa � 
50 mV, EK � �100 mV, EL �
�70 mV; the membrane capacitance is C � 2 pF; and the adaptation
time constant �A � 100 ms.

For the model with AHP-type current (Fig. 5C) g�A � 5 nS and
VA � 0 mV. For the model with M-type current (Fig. 5D) g�A � 1.5
nS and VA � �35 mV.

WANG MODEL. The Wang model includes a sodium-activated po-
tassium current IKNa, causing very slow spike-frequency adaptation
(Wang et al. 2003; Fig. 5E). We removed the coupling to the dendritic
compartment as well as the calcium-gated potassium current, to focus
on the effects of the sodium-gated potassium current. The resulting
single membrane equation for the somatic membrane potential V
(measured in mV) reads

C
dV

dt
� �INa � IK � IL � ICa � IIKNa 	 I

with the voltage-gated sodium current INa � g�Na�1 
 4 exp[�(V 

58)/12]{exp[�0.1(V 
 33)] � 1}/[�0.1(V 
33)]}��3h(V � ENa), volt-
age-gated potassium current IK � g�Kn4(V � EK), leak current IL �
g�L(V � EL), voltage-gated calcium current ICa � g�Ca{1 
 exp[�(V 

20)/9]}�2(V � ECa), and sodium-gated potassium current IKNa �
g�KNa0.37/[1 
 (38.7/[Na])3.5](V � EK). Kinetics of the two gating
variables h and n, respectively, are given by

0.25
dh

dt
� 0.07 exp��(V 	 50) ⁄ 10�(1 � h)

�
1

exp��0.1(V 	 20)� 	 1
h

0.25
dn

dt
�

�0.01(V 	 34)

exp��0.1(V 	 34)� � 1
(1 � n)

� 0.125 exp��(V 	 44) ⁄ 25�n

The kinetics for the intracellular calcium concentration [Ca] (in mM)
follows

d�Ca�
dt

� �0.002ICaS � �Ca� ⁄ 240

and the kinetics of the sodium concentration [Na] is

d�Na�
dt

� �0.0003INa � 3 · 0.0006	 �Na�3

�Na�3 	 153
�

83

83 	 153

Values of the conductances are g�Na � 45 mS/cm2, g�K � 18 mS/cm2,
g�L � 0.1 mS/cm2, g�Ca � 1 mS/cm2, g�KNa � 3 mS/cm2; the reversal
potentials are ENa � 
55 mV, EK � �80 mV, EL � �65 mV, ECa �

120 mV; and the membrane capacitance is C � 1 
F/cm2.

EDMAN MODEL. The Edman model is a one-compartment model with
slow inactivation of the sodium current (Edman et al. 1987; Fig. 5F). The
membrane equation for the membrane potential V (measured in mV) reads

AC
dV

dt
� �INa � IK � ILNa � ILK � ILCI � IP 	 0.001I

with the voltage-gated sodium INa � PNam
2hl�Na(V) (where l is the

gating variable responsible for slow inactivation) and potassium
current IK � PKn2r�K(V), the sodium ILNa � PLNa�Na(V), potassium
ILK � PLK�K(V), and chloride leak current ILCl � PLCl�Cl(V), where

�Y(V) � AV
F2

RT

[Y]o � [Y]i exp	�
VF

RT



1 � exp	�
VF

RT



The sodium-pump current is IP � 106APPF/{3(1 
 7.7 mM/[Na]i)
3}

and the input current I is measured in nA. The kinetics of the gating
variables x � m, h, l, n, and r is given by

�x

dx

dt
� x
 � x

with
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x
 � vx 	
1 � vx

1 	 exp��
zxe

kT
(V � Vx)�

and

�x � �x

	1 � dx

dx

dx

	 	1 � dx

dx

dx�1

exp��dx

zxe

kT
(V � Vx)� 	 exp��(dx � 1)

zxe

kT
(V � Vx)�

The parameter values are dm � 0.3, dh � 0.5, dl � 0.3, dn � 0.3, dr �
0.5; zm � 3.1, zh � �4.0, zl � �3.5, zn � 2.6, zr � �4.0; vm � 0.0, vh �
0.0, vl � 0.0, vn � 0.03, vr � 0.3; Vm � �13.0 mV, Vh � �35.0 mV,
Vl � �53.0 mV, Vn � �18.0 mV, Vr � �61.0 mV; ��m � 0.3 ms, ��h �
5.0 ms, �� l � 1,700.0 ms, ��n � 6.0 ms, �� r � 1,200.04 ms; temperature
T � 291 K; Faraday constant F � 96,485 C/mol; gas constant R �
8,314.4 mJ · K�1 · mol�1; electron charge e � 1.60217653 
 10�22 kC;
Boltzman constant k � 1.3806505 
 10�23 J/K.

The kinetics for the intracellular sodium concentration [Na]i (in
mM) is as follows

1,000FVol
d�Na�i

dt
� �INa � ILNa � 3IP

The extracellular concentrations are [Na]o � 325 mM, [K]o � 5
mM, and [Cl]o � 414 mM. The intracellular concentration of chloride
is [Cl]i � 46 mM. The intracellular concentrations of sodium and
potassium at rest are [Na]r � 10 mM and [K]r � 160 mM, respec-
tively. The intracellular concentration of potassium is then given by
[K]i � [K]r � ([Na]i � [Na]r).

The permeabilities are PNa � 5.6 
 10�4 cm/s, PK � 2.4 
 10�4

cm/s, PLNa � 5.8 
 10�8 cm/s, PLK � 1.8 
 10�6 cm/s, PLCl � 1.1 

10�7 cm/s, PP � 3.0 
 10�10 mol · cm�2 · s�1, the membrane
capacitance is C � 7.8 
F/cm2, the cell surface A � 0.001 cm2, and the
cell volume Vol � 1.25 
 10�6 cm3.

A C K N O W L E D G M E N T S

We thank B. Lindner, M. Chacron, and M. Nawrot for discussing aspects of
this manuscript.

G R A N T S

This research was supported by The German Federal Ministry of Education
and Research Bernstein Award 01GQ0802 to J. Benda and Canadian Institute
of Health Research Grant CIHR 49510 to A. Longtin and L. Maler.

D I S C L O S U R E S

No conflicts of interest, financial or otherwise, are declared by the author(s).

R E F E R E N C E S

Azouz R, Gray CM. Dynamic spike threshold reveals a mechanism for
synaptic coincidence detection in cortical neurons in vivo. Proc Natl Acad

Sci USA 97: 8110–8115, 2000.
Benda J, Hennig RM. Dynamics of intensity invariance in a primary auditory

interneuron. J Comput Neurosci 24: 113–136, 2008.
Benda J, Herz AVM. A universal model for spike-frequency adaptation.

Neural Comput 15: 2523–2564, 2003.
Benda J, Longtin A, Maler L. Spike-frequency adaptation separates transient

communication signals from background oscillations. J Neurosci 25: 2312–
2321, 2005.

Bibikov NG, Ivanitskíí GA. Simulation of spontaneous discharge and short-
term adaptation in acoustic nerve fibers. Biofizika 30: 141–144, 1985.

Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an
effective description of neuronal activity. J Neurophysiol 94: 3637–3642,
2005.

Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive

K
 current in a vertebrate neuron. Nature 183: 673–676, 1980.

Chacron MJ, Lindner B, Longtin A. Threshold fatigue and information

transfer. J Comput Neurosci 23: 301–311, 2007.

Chacron MJ, Longtin A, Maler L. Negative interspike interval correlations

increase the neuronal capacity for encoding time-dependent stimuli. J

Neurosci 21: 5328–5343, 2001.

Chacron MJ, Longtin A, St-Hilaire M, Maler L. Suprathreshold stochastic

firing dynamics with memory in P-type electroreceptors. Phys Rev Lett 85:

1576–1579, 2000.

Chacron MJ, Maler L, Bastian J. Electroreceptor neuron dynamics shape

information transmission. Nat Neurosci 8: 673–678, 2005.

Edman Å, Gestrelius S, Grampp W. Analysis of gated membrane currents

and mechanisms of firing control in the rapidly adapting lobster stretch

receptor neurone. J Physiol 384: 649–669, 1987.

Ermentrout B. Type I membranes, phase resetting curves, and synchrony.

Neural Comput 8: 979–1001, 1996.

Ermentrout B. Linearization of f–I curves by adaptation. Neural Comput 10:

1721–1729, 1998.

Ermentrout B, Pascal M, Gutkin B. The effects of spike frequency adapta-

tion and negative feedback on the synchronization of neural oscillators.

Neural Comput 13: 1285–1310, 2001.

Ermentrout GB, Kopell N. Parabolic bursting in an excitable system coupled

with a slow oscillation. SIAM J Appl Math 46: 233–253, 1986.

Farkhooi F, Strube-Bloss MF, Nawrot MP. Serial correlation in neural spike

trains: Experimental evidence, stochastic modeling, and single neuron vari-

ability. Phys Rev E 79: 021905, 2009.

Fleidervish IA, Friedman A, Gutnick MJ. Slow inactivation of Na
 current

and slow cumulative spike adaptation in mouse and guinea-pig neocortical

neurones in slices. J Physiol 4931: 83–97, 1996.

Fohlmeister JF. A theoretical study of neural adaptation and transient re-

sponses due to inhibitory feedback. Bull Math Biol 41: 257–282, 1979.

Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. How spike

generation mechanisms determine the neuronal response to fluctuating

inputs. J Neurosci 23: 11628–11640, 2003.

Geisler CD, Goldberg JM. A stochastic model of the repetitive activity of

neurons. Biophys J 6: 53–69, 1966.

Gigante G, Giudice PD, Mattia M. Frequency-dependent response properties

of adapting spiking neurons. Math Biosci 207: 336–351, 2007.

Hill AV. Excitation and accommodation in nerve. Proc R Soc Lond B Biol Sci

119: 305–355, 1936.

Holden AV. Models of the stochastic activity of neurons. In: Lecture Notes in

Biomathematics. Berlin: Springer-Verlag, 1976, vol. 12.

Izhikevich EM. Neural excitability, spiking, and bursting. Int J Bifurc Chaos

10: 1171–1266, 2000.

Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw

14: 1569–1572, 2003.
Izhikevich EM. Which model to use for cortical spiking neurons? IEEE Trans

Neural Netw 15: 1063–1070, 2004.
Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W. A

benchmark test for a quantitative assessment of simple neuron models. J

Neurosci Methods 169: 417–424, 2008.
Lapicque L. Quantitative investigations of electrical nerve excitation treated

as polarization: Louis Lapicque 1907, translated from French by Brunel N,
van Rossum MCW. Biol Cybern 97: 341–349, 2007.

Latham PE, Richmond BJ, Nelson PG, Nirenberg S. Intrinsic dynamics in
neuronal networks. II. Experiment. J Neurophysiol 83: 808–827, 2000.

Lindner B, Chacron MJ, Longtin A. Integrate-and-fire neurons with thresh-
old noise: a tractable model of how interspike interval correlations affect
neuronal signal transmission. Phys Rev E 72: 021911, 2005.

Lindner B, Longtin A. Nonrenewal spike trains generated by stochastic
neuron models. Proc SPIE 5114: 209–218, 2003.

Lindner B, Longtin A. Effect of an exponentially decaying threshold on the
firing statistics of a stochastic integrate-and-fire neuron. J Theor Biol 232:
505–521, 2005.

Lindner B, Longtin A, Bulsara A. Analytic expressions for rate and CV of
a type I neuron driven by white Gaussian noise. Neural Comput 15:
1760–1787, 2003.

Liu YH, Wang XJ. Spike-frequency adaptation of a generalized leaky inte-
grate-and-fire model neuron. J Comput Neurosci 10: 25–45, 2001.

Madison DV, Nicoll RA. Control of the repetitive discharge of rat CA1
pyramidal neurones in vitro. J Physiol 354: 319–331, 1984.

2819ADAPTATION CURRENTS VERSUS DYNAMIC THRESHOLDS

J Neurophysiol • VOL 104 • NOVEMBER 2010 • www.jn.org

 on N
ovem

ber 3, 2010 
jn.physiology.org

D
ow

nloaded from
 



Mason A, Larkman A. Correlations between morphology and electrophysi-
ology of pyramidal neurons in slices of rat visual context. II. Electrophys-
iology. J Neurosci 10: 1415–1428, 1990.

Naud R, Marcille N, Clopath C, Gerstner W. Firing patterns in the adaptive
exponential integrate-and-fire model. Biol Cybern 99: 335–347, 2008.

Peron S, Gabbiani F. Spike frequency adaptation mediates looming stimulus
selectivity in a collision-detecting neuron. Nat Neurosci 12: 318–326, 2009.

Prescott SA, Sejnowski TJ. Spike-rate coding and spike-time coding are
affected oppositely by different adaptation mechanisms. J Neurosci 28:
13649–13661, 2008.

Ratnam R, Nelson ME. Nonrenewal statistics of electrosensory afferent spike
trains: implications for the detection of weak sensory signals. J Neurosci 20:
6672–6683, 2000.

Rauch A, Camera GL, Lüscher HR, Senn W, Fusi S. Neocortical pyramidal
cells respond as integrate-and-fire neurons to in vivo-like input currents. J

Neurophysiol 90: 1598–1612, 2003.
Rinzel J, Ermentrout B. Analysis of neural excitability and oscillations. In:

Methods in Neural Modeling, edited by Koch C, Segev I. Cambridge, MA:
MIT Press, 1998, p. 251–292.

Sah P. Ca2
-activated K
 currents in neurones: types, physiological roles and
modulation. Trends Neurosci 19: 150–154, 1996.

Sobel EC, Tank DW. In vivo Ca2
 dynamics in a cricket auditory neuron: an
example of chemical computation. Science 263: 823–826, 1994.

Stein RB. A theoretical analysis of neuronal variability. Biophys J 5: 173–194,
1965.

Sutherland C, Doiron B, Longtin A. Feedback-induced gain control in
stochastic spiking networks. Biol Cybern 100: 475–489, 2009.

Tateno T, Harsch A, Robinson HP. Threshold firing frequency–current
relationships of neurons in rat somatosensory cortex: type 1 and type 2
dynamics. J Neurophysiol 92: 2283–2294, 2004.

Treves A. Mean-field analysis of neuronal spike dynamics. Network Comput

Neural Syst 4: 259–284, 1993.
Tuckwell HC. Recurrent inhibition and afterhyperpolarization: effects on

neuronal discharge. Biol Cybern 30: 115–123, 1978.
Wang XJ. Calcium coding and adaptive temporal computation in cortical

pyramidal neurons. J Neurophysiol 79: 1549–1566, 1998.
Wang XJ, Liu Y, Sanchez-Vives M, McCormick D. Adaptation and tem-

poral decorrelation by single neurons in the primary visual cortex. J

Neurophysiol 89: 3279–3293, 2003.
Wilbur WJ, Rinzel J. A theoretical basis for large coefficient of variation and

bimodality in neuronal interspike interval distributions. J Theor Biol 105:
345–368, 1983.

2820 J. BENDA, L. MALER, AND A. LONGTIN

J Neurophysiol • VOL 104 • NOVEMBER 2010 • www.jn.org

 on N
ovem

ber 3, 2010 
jn.physiology.org

D
ow

nloaded from
 


