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1 Abstract

The environment contains vital information for the survival of an organism. Thus it is
critical for the senses of an organism to encode this information. This encoding process
needs to be efficient to gather the most information possible while at the same time filter-
ing and removing noise and irrelevant information. The active electric sense used by the
electric fish Apteronotus leptorhynchus is a well defined model system for adaptive signal
processing. The population of P-Unit neurons, the electro sensory afferents, display strong
heterogeneity. The proposed model is able to reproduce this heterogeneic population allow
further research into the encoding of such heterogeneous neuron populations.

3



2 Introduction

The environment of an organism holds important information needed to survive. Infor-
mation about predators to avoid, food to find and potential mates. The ability to sense
and process this information is of vital importance for any organism. At the same time
the environment also contains a lot of information that is irrelevant to an organism. Bar-
low et al. (1961) already suggested that the sensory systems of an organism should be
specialized to extract the information it needs while filtering out the noise and irrelevant
information, to efficiently use the limited coding capacity of the sensory systems.

One interesting model system for questions of adaptive signal processing is the elec-
tric fish Apteronotus leptorhynchus (brown ghost knifefish). A. leptorhynchus generates a
sinusoidal electric field through discharges of its electric organ in their tail (electric organ
discharge, EOD) enabling them to use active electroreception. They use their EOD to find
prey and communicate with each other (Maciver et al. (2001), Zupanc et al. (2006)). The
different use cases of this EOD come with the necessity to detect a wide range of different
amplitude modulations (AMs). Electrolocation of objects in the surrounding water - like
small prey or rocks - cause small low frequency AMs (Babineau et al., 2007). At the same
time other electric fish can cause stronger and higher frequency AMs through interference
between the electric fields and their communication signals like chirps, short increases in
their EOD frequency (Zupanc et al., 2006). This means that the electroreceptors need to
be able to encode a wide range of changes in EOD amplitude, in speed as well as strength.

The EOD and its AMs are encoded by electroreceptor organs in the skin. A. lep-
torhynchus posses two kinds of tuberous electrosensory organs: the T and P type units
(Scheich et al., 1973). The T-units (time coder) are strongly phase locked to the EOD
and fire regularly once every EOD period. They encode the phase of the EOD in their
spike timing. The P-units (probability coders) on the other hand do not fire every EOD
period. Instead, they fire irregularly with a certain probability that depends on the EOD
amplitude. That way they encode information about the EOD amplitude in their firing
probability (Scheich et al., 1973). An example of the firing behavior of a P-unit is shown
in figure 1. When the fish’s EOD is unperturbed, P-units fire every few EOD periods.
Still they have a certain variability in their firing (fig. 1 B) and show negative correlation
between successive interspike intervals (ISIs)(fig. 1 C). When presented with a step in-
crease in EOD amplitude P-units show strong adaption behavior. After a strong increase
in the firing rate reacting to the onset of the step, the firing rate quickly decays back to a
steady state (fig. 1 D). When using different sizes of steps both the onset and the steady
state response scale with its size and direction of the step (fig. 1 E).
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Figure 1: Example behavior of a P-unit with a high baseline firing rate and an EOD
frequency of 744 Hz. A: 100 ms voltage trace of the baseline recording with spikes marked
by the black strokes. B: ISI histogram showing the phase locking of the P-unit firing to the
EOD period. C: The serial correlation of the ISIs showing the negative correlation at lag
one of most P-units. D: The response of the P-unit to a step increase in EOD amplitude.
The averaged firing frequency (1/ISI) averaged over 10 trials. The P-unit strongly reacts
to the onset of the stimulus but very quickly adapts to the new stimulus and then shows a
reduced steady state response. E: The onset (red) and steady-state (dark blue) f-I curves
of the neuron display the dependence of both responses on the stimulus contrast. The
lines are fits with a Boltzmann function (eq. 5) and a rectified linear fit (eq. 6) for the
onset and steady state f-I curve respectively.
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Figure 2: Variability in spiking behavior between P-units under baseline conditions.
A–C: 100 ms of cell membrane voltage and D–F: interspike interval histograms, each for
three different cells. A and D: A non-bursting cell with a baseline firing rate of 133 Hz
(EODf: 806 Hz), B and E: A cell with some bursts and a baseline firing rate of 235 Hz
(EODf: 682 Hz) and C and F: A strongly bursting cell with longer pauses between bursts
(baseline rate of 153 Hz and EOD frequency of 670 Hz).

Furthermore show P-units a pronounced heterogeneity in their spiking behavior (fig. 2,
Gussin et al. (2007)). Currently the spiking behavior of P-units is often split into two
distinct categories of bursting and non-bursting cells (Xu et al. (1996), Chacron et al.
(2004)) or the bursting behavior is not considered at all (Walz, 2013). But when one is
trying to understand how information is encoded in the spike trains and populations of
neurons the bursts (review: Zeldenrust et al. (2018)) and general heterogeneity (Padman-
abhan and Urban (2010), Tripathy et al. (2013)) are important aspects to consider. A
single neuron might be an independent unit from all other neurons but through different
tuning curves a full picture of the stimulus can be encoded in the population even when a
single neuron only encodes a small feature space. This type of encoding is ubiquitous in
the nervous system and is, for example in form of a labeled line code, used in the visual
sense for color vision. Even though P-units were already modelled based on a simple
leaky integrate-and-fire neuron (Chacron et al. (2001), Walz (2013)) and conductance
based (Kashimori et al., 1996) and also well studied (Bastian (1981), Ratnam and Nelson
(2000) Benda et al. (2005)), up to this point there is no model that tries to cover the full
breadth of heterogeneity of the P-unit population. Having such a model could help shed
light into the population code used in the electric sense, but also of heterogeneous neuron
populations in general as there are currently few model systems that have well defined
heterogeneous populations. Further it could allow researchers gain a better picture how
higher brain areas might process the information and get closer to the full path between
sensory input and behavioral output.
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3 Materials and Methods

3.1 Cell Recordings

The cell recordings for this master thesis were collected as part of other previous studies
like Walz (2013) and Walz et al. (2014). The recordings of altogether 457 P-units were
inspected. 88 of the recordings fulfilled the basic necessary requirements: including a
measurement of at least 30 seconds of baseline behavior and containing at least 7 different
contrasts with a minimum of 7 trials each for the f-I curve (see below fig. 4 B). After
pre-analysis of those cells 15 cells additional were excluded because of spike detection
difficulties.

The 67 used cells came from 32 Apteronotus leptorhynchus (brown ghost knifefish).
The fish were between 11–25 cm long (15.8 ± 3.5 cm) and their electric organ discharge
(EOD) frequencies (EODf) ranged between 601 and 928 Hz (753 ± 82 Hz). The sex of the
fish was not determined.

The in vivo intracellular recordings of P-unit electroreceptors were done in the lateral
line nerve. The fish were anesthetized with MS-222 (100-130 mg/l; PharmaQ; Fording-
bridge, UK) and the part of the skin covering the lateral line just behind the skull was
removed, while the area was anesthetized with Lidocaine (2%; bela-pharm; Vechta, Ger-
many). The fish were immobilized for the recordings with Tubocurarine (Sigma-Aldrich;
Steinheim, Germany, 25–50µl of 5 mg/ml solution) and placed in the experimental tank
(47 × 42 × 12 cm) filled with water from the fish’s home tank. The water had a con-
ductivity of about 300µ S/cm and the temperature was around 28◦C. All experimental
protocols were approved and complied with national and regional laws (files: no. 55.2-
1-54-2531-135-09 and Regierungspräsidium Tübingen no. ZP 1/13 and no. ZP 1/16).
For the recordings a standard glass mircoelectrode (borosilicate; 1.5 mm outer diame-
ter; GB150F-8P, Science Products, Hofheim, Germany) was used. They were pulled to
a resistance of 50–100 MΩ using Model P-97 from Sutter Instrument Co. (Novato, CA,
USA) and filled with 1 M KCl solution. The electrodes were controlled using microdrives
(Luigs-Neumann; Ratingen, Germany) and the potentials recorded with the bridge mode
of the SEC-05 amplifier (npi-electronics GmbH, Tamm, Germany) and low-pass filtered
at 10 kHz.

During the recording spikes were detected online using the peak detection algorithm
from Todd and Andrews (1999). It uses a dynamically adjusted threshold value above the
previously detected trough. To detect spikes through changes in amplitude the threshold
was set to 50% of the amplitude of a detected spike while keeping the threshold above a
minimum set to be higher than the noise level based on a histogram of all peak amplitudes.
Trials with bad spike detection were removed from further analysis. The fish’s EOD was
recorded using two vertical carbon rods (11 cm long, 8 mm diameter) positioned in front
of the head and behind its tail. The signal was amplified 200 to 500 times and band-
pass filtered (3 − 1500 Hz passband, DPA2-FX, npi-electronics, Tamm, Germany). The
electrodes were placed on iso-potential lines of the stimulus field to reduce the interference
of the stimulus in the recording. All signals were digitized using a data acquisition board
(PCI-6229; National Instruments, Austin TX, USA) at a sampling rate of 20–100 kHz (54
cells at 20 kHz, 20 at 100 kHz and 1 at 40 kHz)

The recording and stimulation was done using the ephys, efield, and efish plugins of
the software RELACS (www.relacs.net). It allowed the online spike and EOD detection,
pre-analysis and visualization and ran on a Debian computer.
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3.2 Stimulus Protocols

The stimuli used during the recordings were presented from two vertical carbon rods (30
cm long, 8 mm diameter) as stimulus electrodes. They were positioned at either side of the
fish parallel to its longitudinal axis. The stimuli were computer generated, attenuated and
isolated (Attenuator: ATN-01M, Isolator: ISO-02V, npi-electronics, Tamm, Germany)
and then send to the stimulus electrodes. For this work two types of recordings were
made with all cells: baseline recordings and amplitude step recordings for the frequency-
intensity curve (f-I curve). The ’stimulus’ for the baseline recording is purely the EOD
field the fish produces itself with no external stimulus.

The amplitude step stimulus here is a step in EOD amplitude. The amplitude mod-
ulation (AM) is measured as a contrast. The contrast is calculated by dividing the EOD
amplitude during the step by the normal EOD amplitude. To be able to cause a given
AM in the fish’s EOD, the EOD was recorded and multiplied with the modulation (see
fig. 3). This modified EOD can then be presented at the right phase with the stimulus
electrodes, causing constructive interference and adding the used amplitude modulation
to the EOD (Fig. 3). This stimuli construction as seen in equation 1 works for any AM
as long as the EOD of the fish is stable.

VStim(t) = EOD(t)(1 + AM(t)) (1)

Figure 3: Example of the
stimulus construction.
A: Recording of the fish’s
EOD. B: EOD recording mul-
tiplied with the AM, with a
step between 0 and 50 ms to
a contrast of 30 % (marked
in orange).C: The resulting
stimulus trace when the AM
is added to the EOD.
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All step stimuli consisted of a delay of 0.2 s followed by a 0.4 s (n=68) or 1 s (n=7) long
step and a 0.8 s long recovery time. The contrast range measured was for the most cells
80–120% of EOD amplitude. Some cells were measured in a larger range up to 20–180%.
In the range at least 7 contrasts were measured with at least 7 trials, but again many
cells were measured with more contrasts and trials. The additionally measured contrasts
were used for the model if they had at least 3 trials.
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3.3 Cell Characteristics

The cells were characterized by ten parameters: 6 for the baseline and 4 for the f-I curve.
For the baseline the mean firing rate was calculated by dividing the number of spikes in
the recording by the recording time. Then the set of all interspike intervals (ISI) T was
computed and further parameters were calculated from it.

The coefficient of variation

CV =
STD(T )

〈T 〉
(2)

is defined as the standard deviation (STD) of T divided by the mean ISI, see equation 2
with angled brackets as the averaging operator.

The vector strength (VS) is a measure of how strong the cell locks to a phase of the
EOD. It was calculated as seen in equation 3, by placing each spike on a unit circle
depending on the relative spike time ti of how much time has passed since the start of
the current EOD period in relation to the EOD period length. This set of vectors is then
averaged and the absolute value of this average vector describes the VS. If the VS is zero
the spikes happen equally in all phases of the EOD while if it is one all spikes happen at
the exact same phase of the EOD.

vs = | 1
n

∑
n

eiwti | (3)

The serial correlation with lag k (SCk) of T is a measure how the ISI Ti (the i-th ISI)
influences the Ti+k the ISI with a lag of k intervals. This is calculated as,

SCk =
〈(Ti − 〈T 〉)(Ti+k − 〈T 〉)〉√
〈(Ti − 〈T 〉)2〉

√
〈(Ti+k − 〈T 〉)2〉

(4)

with the angled brackets again the averaging operator.
Finally the ISI-histogram was calculated within a range of 0–50 ms and a bin size of

0.1 ms. The burstiness was calculated as the percentage of ISI smaller than 2.5 EOD
periods multiplied by the average ISI. This gives a rough measure of how often a cell fires
in the immediately following EOD periods compared to its average firing frequency.

9



0.2 0.0 0.2 0.4 0.6
Time [s]

0

100

200

300

400

500

600

700
Fr

eq
ue

nc
y 

[H
z]

A Step Response

0.2 0.1 0.0 0.1
Contrast

B f-I Curve

Figure 4: A: The averaged response of a cell to a step in EOD amplitude. The step
of the stimulus is marked by the back bar. The detected values for the onset (f0) and
steady-state (f∞) response are marked in dark blue. f0 is detected as the highest deviation
from the mean frequency before the stimulus while f∞ is the average frequency in the
0.1 s time window, 25 ms before the end of the stimulus. B: The fi-curve visualizes the
onset and steady-state response of the neuron for different stimuli contrasts. In red the
detected onset responses and the fitted Boltzmann, in dark blue the detected steady-state
response and the linear fit.

As already mentioned in the introduction, P-units react to a step in EOD amplitude
with a strong onset response decaying back to a steady state response (fig. 4 A). This
adaption behavior of the cell was characterized by the f-I curve measurements. First the
ISI frequency trace for each stimulus was calculated. The ISI frequency of a time point t
is defined as 1/Ti with Ti the ISI the time point t falls into. This gives a frequency trace
starting with the first spike and ending at the last spike. For further analysis, all trials of
a specific contrast were averaged over the trials with the resolution of the sampling rate.
This results in a trial-averaged step response for each contrast as illustrated in figure 4 A.
In this firing frequency trace the baseline frequency, the onset f0 and steady-state f∞
response were detected. The baseline frequency was measured as the mean of the firing
frequency 25 ms after recording start up to 25 ms before the stimulus start. f0 was then
defined as the largest deviation from the baseline frequency, within the first 25 ms after
stimulus onset. If there was no deviation farther than the minimum or maximum before
the stimulus start, then the average frequency in that 25 ms time window was used. This
approximation made the detection of f0 more stable for small contrasts and trials with
high variation in their firing rates. The f∞ response was estimated as the average firing
frequency in the 100 ms time window ending 25 ms before the end of the stimulus (fig. 4
A). Afterwards a Boltzmann function:

f0(I) = (fmax − fmin)(1/(1 + e−k∗(I−I0))) + fmin (5)

was fitted to the onset response and a rectified line:

f∞(I) = bmI + cc0 (6)
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(with bxc0 the rectify operator) was fitted to the steady-state responses (fig. 4 B).

3.4 Leaky Integrate-and-Fire Model

The above described cell characteristics need to be reproduced by a simple and efficient
model to be able to simulate bigger populations in a reasonable time. The model used in
this thesis follows these equations:

τm
dV

dt
= −V + IBias + αVdend − IA +

√
2D

ξ√
∆t

(7)

τA
dIA
dt

= −IA + ∆A

∑
δ(t) (8)

τdend
dVdend
dt

= −Vdend + bVstimc0 (9)

Equation 7 describes the leaky dynamics of the membrane voltage with τm the mem-
brane time constant, IBias a bias current, α the cell specific gain factor for Vdend the input
voltage coming from the dendrite.

√
2D is the strength of the normal distributed noise

ξ. IA is an adaption current with the dynamics of equation 8. τA is the time constant of
the adaption, ∆A its strength and δ(t) is the spike train of the cell. Equation 9 shows the
dynamics of the synapse and dendrite with τdend the time constant of the dendrite and
bVstimc0 the rectified stimulus given. Finally the model also includes a refractory period
tref , not shown in above equations, that keeps the membrane voltage V at zero for its
duration.

To arrive at this proposed model the perfect integrate-and-fire (PIF) model was step-
wise extended. The PIF is the simplest commonly used neuron model. Its voltage can be
described in one equation: τm

dV
dt

= I
Rm

with I the stimulus current, Rm the membrane re-
sistance and a voltage threshold Vθ. In this model I is integrated and when this threshold
θ is reached the voltage is reset to zero and a spike is recorded (see fig. 5 PIF). The model
is useful for basic simulations but cannot reproduce the richer behavior of the P-units, as
it has no memory of previous spikes so it cannot show any adaption behavior. It is also
very strongly locked to its limit cycle producing very constant ISI, not allowing the firing
flexibility of the P-units.

The next slightly more complex model is the leaky integrate-and-fire (LIF) model:

τm
dV

dt
= −V + IRm (10)

As the name suggests it adds a leakage current to the PIF (fig. 5 LIF). The leakage
current adds sub threshold behavior to the model and allows for some more flexibility in
suprathresold firing but it is still not flexible enough and cannot reproduce the adaption.

To reproduce the adaption behavior the model needs some form of memory of previous
spikes. There are two main ways this can be added to the model as an adaptive current or
a dynamic threshold. The biophysical mechanism of the adaption in P-units is unknown
because the cell bodies are not accessible for intra-cellular recordings. Following the
results of Benda et al. (2010) a negative adaptive current was chosen, because the dynamic
threshold causes divisive adaption instead of the subtractive adaption of P-units seen in
Benda et al. (2005). This results in an leaky integrate-and-fire model with adaption
current (LIFAC) (fig. 5 LIFAC). The added adaptive current follows the dynamics:

τA
dIA
dt

= −IA + ∆A

∑
δ(t) (11)
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and gets subtracted from the input current I of the voltage dynamics in equation 10.
It is modelled as an exponential decay with the time constant τA and an adaption strength
∆A. ∆A is multiplied with the sum of spikes ti in the spike train (δ(ti)) of the model cell.
For the simulation using the Euler integration this results in an increase of IA by ∆A

τA
at

every time step where a spike is recorded. The input current I from equation 10 is a sum
of those two currents and an additional bias current IBias that is needed to adjust the
cells spontaneous spiking:

I = αIInput − IA + IBias (12)

Note that in this P-unit model all currents are measured in mV because, as mentioned
above, the cell body is not accessible for intra-cellular recordings and as such the mem-
brane resistance Rm is unknown. The input current IInput is the current of the stimulus,
an amplitude modulated sine wave mimicking the frequency EOD. This stimulus is then
rectified to model the receptor synapse and low-pass filtered with a time constant of τdend
to simulate the low-pass filter properties of the dendrite (fig. 6) according to:

τdend
dVdend
dt

= −Vdend + bIInputc0 (13)

Afterwards it is multiplied with α a cell specific gain factor. This gain factor has the
unit of cm because the IInput stimulus represents the EOD with a unit of mV/cm.

Finally, noise and an absolute refractory period were added to the model. The noise
ξ is drawn from a Gaussian noise distribution and divided by

√
∆t to get a noise which

autocorrelation function is independent of the simulation step size ∆t. The implemented
form of the absolute refractory period tref keeps the model voltage at zero for the duration
of tref after a spike. This gives us the full model described in equations 7–9.
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Figure 5: Comparison of different simple models normed to a spontaneous firing rate of
10 Hz stimulated with a step stimulus. PIF: Shows a continuously increasing membrane
voltage with a fixed slope and as such constant frequency for a given stimulus strength.
LIF: Approaches a stimulus dependent membrane voltage steady-state exponentially but
also has constant frequency for a fixed stimulus value. LIFAC: Exponentially approaches
its new membrane voltage value but also shows adaption after changes in the stimulus
the frequency takes some time to adapt and arrive at the new stable value.
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parameter explanation unit
α stimulus scaling factor [cm]
τm membrane time constant [ms]
IBias bias current [mV]√

2D noise strength [mV
√

s]
τA adaption time constant [ms]
∆A adaption strength [mVms]
τdend time constant of dendritic low-pass filter [ms]
tref absolute refractory period [ms]

Table 1: Overview about all parameters of the model that are fitted.

3.5 Fitting of the Model

The full model has, as described above, eight parameters that need to be fit so it can
reproduce the behavior of the cell. During the fitting and the analysis all models were
integrated with at time step of 0.05 ms. The stimuli described in the stimulus protocols
section above were recreated for the stimulation of the model during the fitting process.
The pure fish EOD was approximated by a simple sine wave of the appropriate frequency,
but it was decided to keep the amplitude of the sine wave at one to make the models more
comparable. Changes in the amplitude can be compensated for by changing the input
scaling factor so there is no qualitative difference.

During the fitting the baseline stimulus was simulated 3 times with 30 s each and the
step stimuli were simulated with a delay, step duration and recovery time of each 0.5 s.
The contrasts were the same as in the cell recordings. The step stimuli for the different
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contrasts were each repeated 8 times. The simulated data was analyzed in the same way
as the cells (see above).

The error function was constructed from both the baseline characteristics: VS, CV,
SC, ISI-histogram and burstiness and the f-I curve: the detections of finf and f0 responses
for each contrast, the slope of the linear fit into the finf and the frequency trace of one
step response.

The error of the VS, CV, SC, and burstiness was calculated as the scaled absolute
difference:

erri = ci|xMi − xCi | (14)

with xMi the model value for the characteristic i, xCi the corresponding cell value and ci
a scaling factor that is the same for all cells but different between characteristics. The
scaling factor was used to make all errors a similar size. They are listed in table 2.

The error for the slope of the finf fit was the scaled relative difference:

erri = ci|1− ((xMi − xCi )/xCi )| (15)

For the finf and f0 responses the average scaled difference of all contrasts was taken
and finally the error for the ISI-histogram and the step-response was calculated with a
mean-square error. For the histogram over all bins but for the step response only the first
50 ms after stimulus onset as an error for the adaption time constant.

erri = ci(〈(xMi − xCi )2〉) (16)

firing property scaling factor
vector strength 100

coefficient of variation 20
serial correlation 10

ISI-histogram 1/600
f0 detections 0.1
f∞ detections 1
f∞ slope 20

f0 step response 0.001

Table 2: Scaling factors for fitting errors.

All errors were then summed up for the full error. The fits were done with the sim-
plex algorithm from Nelder and Mead (1965) implemented in the python package Scipy
according to Gao and Han (2012). All model variables listed above in table 1 were fit at
the same time except for IBias. IBias was determined before each fitting iteration and set
to a value giving the correct baseline firing frequency within 2 Hz.

The parameters were constrained during fitting to reduce the search space and limit
impossible values. The time constants τm, τA, τdend were constrained to be larger than
1 ms to keep the simulation stable with the integration step size of 0.05 ms. α,

√
2D, ∆A,

tref were constrained to be larger than 0 and tref was also limited to be smaller than 1.05
times the EOD period.

The model was fit to each in vivo recording of a single P-unit with 12 different start
parameters (tab. 3). Of the resulting 12 fitted models the best was chosen for further
analysis. The resulting 67 fitted models were then filtered for f0 slope above 50000 and
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a CV more than 33% different from the cell value. This filtering removed 13 cell-model
pairs. 11 were filtered by the CV requirement and 2 by the f0 slope requirement. This
left 54 fitted models for further analysis.

parameter values unit
α 80 [cm]
τm 1 [ms]√
2D 0.01 [mV

√
s]

τA 20, 40 [ms]
∆A 10, 30, 65 [mVms]
τdend 2 [ms]
tref 0.65, 1.2 [ms]

Table 3: Model parameter values used as start parameters during the fitting. Every
combination was used resulting in a total of twelve parameter sets. IBias has no start
parameter as it is set during the fit iterations to match the baseline firing rate.
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4 Results

4.1 Model Examples

First the effect of the dendritic low-pass filter and the refractory period was investigated.
This was done by fitting the model to three cells representing the continuously firing,
weakly and strongly bursting cells, while removing the parameter to be investigated e.g.
once without the low-pass filter and once without a refractory period (fig. 7).

The model without the dendritic low-pass filter was able to fit the shape of the ISI
histogram even for the strongly bursting cell but was not able to correctly match the
height of the distribution. It has very thin peaks which show that this model locks very
strongly to the phase of the EOD and cannot match the weaker locking of the cells (fig.
7 A).

When the refractory period of the model is disabled it can still match the ISI histogram
of the continuously firing cell perfectly, but is not able to match the ISI histogram shape for
the two bursting cells. These cells have more than one local maximum in their histogram:
One at the first EOD period caused by the bursts and a second at a latter EOD period
showing the times between bursts. The model without tref is only able to produce a single
maximum in their ISI histogram and cannot match the high firing probability at the first
EOD period (fig. 7 B).

The full model with both parameters can match both the shape and the height of the
full ISI histogram for all three cells shown in figure 7 C, but there are also cases in which
the model fails to reproduce the ISI histogram of the cell (fig. 8). The cell A in figure
8 shows a very strongly bursting cell. This cell has a very high peak at the first EOD
period and there is some distance to the rest of the ISI distribution. This means that the
cell has a few EOD periods in which it does not fire after a burst (compare fig. 2 C). The
fitted model fails at reproducing the long pauses between the bursts and in this case also
shows a too low phase locking. In figure 8 B the cell shows a high firing probability for the
first two EOD periods after a spike and showing only afterwards the Gaussian-like firing
probability distribution over multiple EOD periods of a continously firing cell. The fitted
model does not show the high probability for the first two EOD periods. Instead it has
only a high firing probability at the first EOD and a very low probability at the second
EOD. The last cell shown in figure 8 has a higher order structure in its ISI histogram. It
has high firing probabilities only at every second EOD period starting at the fourth EOD.
This higher order structure is not matched by the model. Instead it shows a continuously
increasing firing probability for each EOD period up to the maximum and then decreases
again - without being reduced every second EOD.

When comparing the f-I curves of the same three cells as (fig. 7) with the f-I curves of
their fits shows good agreement for all three (fig. 9), except the steady-state response of
cell C, where the model shows a steeper slope. Note the miss-detections of the f0 response
in the negative contrasts of cell C influencing the fit of the Boltzmann function. The cells
also demonstrate the variability of the cells in the strength of their response to the step
stimuli.

All fitted models were again examined and representative failure cases are shown in
figure 10. The fitted model in A overestimates the slope of the steady-state response and
underestimates the frequency in the lower half of the onset response. The second example
of the problematic cases (fig. 10 B) is a cell with a very high baseline firing rate where
the model does not manage to reproduce the plateau the cell quickly reaches for positive
contrasts. Instead the frequency of its onset response continues to increase above the
possible range of one spike per EOD period.
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Figure 7: Effect of the dendritic filter and the refractory period on baseline firing. In
each row data (blue) and model fits (orange) to three example cells are shown. These
cells differ in their burstiness as indicated on the left. Top: cell 2012-12-21-am, r=135 Hz,
b=0.02 %ms; center: cell 2014-03-19-ad-invivo-1, r=237 Hz b=1.69 %ms; bottom: cell
2014-03-25-aa r=204 Hz, b=1.9 %ms A: Without dendritic filter (τdend) the spikes are too
strongly locked to the EOD, resulting in very high vector strength and too narrow peaks in
the baseline ISI histogram. B: Without refractory period (tref ) the model cannot capture
the burstiness. While this is no problem for the non-bursting cell (top), the peak in the
ISI histogram at one EOD period cannot be reproduced without refractory period. C:
With both the dendritic filter and the refractory period ISI histograms can be faithfully
reproduced for all three cells.
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Figure 8: Problem cases in which the model ISI histogram was not fitted correctly. A:
(cell 2014-06-06-ag r=117 Hz , b=3.9) Strongly bursting cell with large pauses between
bursts, where the model does not manage to reproduce the long pauses. B: (cell 2018-
05-08-ab r=112 Hz , b=2.8) Bursting cell with a high probability of firing in the first and
second following EOD period. Here the model can not reproduce the high probability
on the second following EOD period. C: (cell 2014-12-11-ad rate=50 Hz, b=0) Cell with
a higher order structure in its ISI histogram. It only has a high firing probability every
second EOD period which is not represented in the model.
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Figure 9: Good fit examples of the f-I curves. The red line the fitted Boltzmann function
and blue line the linear fit for the cell’s f0 and f∞ response respectively. A: cell 2012-12-21-
am r=135 Hz, EODf=806 Hz; B: cell 2014-03-19-ad-invivo-1 r=237 Hz, EODf=658 Hz; C:
cell 2014-03-25-aa r=204 Hz, EODf=870 Hz. The cells show different response strengths
to the contrasts. Which are all well matched by their models.
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Figure 10: Examples of bad fits of the f-I curves. The red line the fitted Boltzmann
function and blue line the linear fit for the cell’s f0 and f∞ response respectively. A:
(cell 2012-12-13-ao r=146 Hz, EODf=657 Hz) Model that did not fit the negative contrast
responses of the f0 response well but was successful in the positive half. It also was
not successful in the f∞ response and shows a too steep slope. B: (cell 2014-01-23-ab
r=431 Hz, EODf=775 Hz) A fit that was successful for the lower f0 response but overshoots
the limit of one spike per EOD period. It also has a slightly too steep f∞ response slope.

4.2 Population Comparison

The general fitting quality was inspected by comparing the distributions in firing behavior
between cells and fitted models as well as directly comparing each cell and its respective
model. The baseline rate was matched perfectly (fig. 11 A) because it was set to be equal
within 2 Hz during the fitting procedure by adjusting the bias current IBias appropriately.
Its approximately log-normal distribution was in the expected range of around 50–400 Hz
of the literature (Gussin et al., 2007).

The vector strength (VS) was matched quiet well. Many cells have a VS of around
0.85 and with a few cells having a VS as low as 0.5. The fitted models show the same
range of VSs but for cells with a VS above 0.8, the models are often underestimating the
true VS.

The models failed to fit the full breadth of the serial correlation (SC) shown by the
cells, that have serial correlations between -0.8– -0.1. The fits fail to match the strong
negative SCs, reducing the range on the lower end to -0.7. The fits of the SC also show
a high variability.
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Figure 11: Comparison of baseline firing properties between cells and their corresponding
fits. The histograms on top compare the distributions of the n= 54 cells in blue and their
respective models in orange. The scatter plot at the bottom directly compares them.
Points on the identity line (grey) indicate perfect model predictions. A: The baseline
firing rate of the cell and the model. The base rate agrees near perfectly as it is set to be
equal within a margin of 2 Hz during the fitting process. B: The vector strength agrees
well for most cells but for some cells with a VS above 0.8 the models to show a weaker
VS than the cell. C: The models fail to show the same strong negative SC at lag 1. This
effect gets stronger the more the SC deviates from -0.4.

The last two baseline firing behaviors are the burstiness and the coefficient of variation
(CV) and both were fit quite similar, because both are correlated as shown below in figure
14 and by the color coding by the computed cell burstiness of the scatter plot (fig. 12). The
model fits lower half of them well but does not manage to match the high values, where
it consistently underestimates the corresponding value. The cells’ burstiness distribution
has two peaks: the continuously firing cells around 0 and the bursting cells around 2.
These two main peaks are still fit quite well but the rare very strongly bursting cell is not
matched by the model. But this may be an artifact of how burstiness was defined here,
as the ISI histograms seem to contain a full continuum between regular firing as seen in
fig. 2 A and the strongly bursting cells as in C. The covariance is distributed more evenly
but still shows the two peaks seen in the burstiness measure.
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Figure 12: Comparison of baseline firing properties between cells and their corresponding
fits. The histograms on top compare the distributions of the n= 54 cells in blue and their
respective models in orange. The scatter plot at the bottom directly compares them.
Points on the identity line (grey) indicate perfect model predictions. The points are
colored by the cell’s burstiness. A: The model values for the burstiness agree well with
the values of the model but again show a tendency that the higher the value of the cell
the more the model value is below it. B: The CV also shows the problem of the burstiness
but the values drift apart more slowly starting around 0.6. The colouring of the points
indicates the correlation between burstiness and CV (shown below).

The models were able to fit the steady-state response of the cells very well (13 A),
with some fluctuations but no strong bias in one direction. Most cells react to a 10%
increase in EOD amplitude with around an increase of their firing frequency of around
40 Hz. The fit of the onset response characterized by the slope of the Boltzmann function
shows very strong fluctuations which make an accurate judgment difficult, as even with
these large differences the quality of the model is still often decent.
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Figure 13: Comparison of adaption properties between cells and their corresponding
fits. The histograms on top compare the distributions of the n=54 cells in blue and their
respective models in orange. The scatter plot at the bottom directly compares them.
Points on the identity line (grey) indicate perfect model predictions. A: The f∞ slope
pairs show good agreement with mostly low scattering in both direction. B: The f0 values
show a higher spread and for steeper slopes the models have more often too flat slopes.

Given the differences between the cell firing properties and the ones of the model the
correlations were calculated and show differences (fig. 14). Of the seven correlations found
in the data set the fitted models show a correlation for all but the correlation between the
VS and baseline firing rate, but the models also show four additional correlations. These
are between the base rate and the f0 slope, base rate and burstiness, base rate and SC
and finally between SC and f∞ slope.

Before the parameter distributions (fig. 15) and correlations (fig. 16) of the model pa-
rameters were closer investigated, the potential influence of the different EOD frequencies
was removed by scaling the time dependent parameters for all models. This was done by
calculating the factor between the fish’s EOD frequency and the chosen EOD frequency
of 800 Hz and then multiplying all time parameters appropriately to their dependence
with the factor. These scaled parameter distributions are shown in figure 15. With these
scaled distributions the correlations between the parameters were computed giving the
matrix in figure 16, it shows extensive correlations between most parameters. The cor-
relations indicate that the parameter can compensate for each other and that the model
can produce similar firing properties for different parameter sets. A notable exception is
the refractory period tref which is independent of all other parameters and could as such
be the only variable influencing the burstiness in this model.
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Figure 14: Significant correlations between the firing properties in the data and the fitted
models (Significance p < 0.05 Bonferroni corrected). The models contain all the same
correlations as the data except for the correlation between the baseline firing rate and the
VS, but they also show four additional correlations not seen within the cells: bursting -
base rate, SC - f∞ slope, f0 slope - base rate, SC - base rate.
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Figure 15: Distributions of all eight model parameters with the time scaled for all models
so their driving EOD frequency has 800 Hz. A: input scaling α, B: Bias current IBias, C:
membrane time constant τm, D: noise strength

√
2D, E: adaption time constant τA, F:

adaption strength ∆A, G: time constant of the dendritic low pass filter τdend, H: refractory
period tref

25



I Bias m 2D A A
de

nd t re
f

IBias

m

2D

A

A

dend

tref

1.00

-0.92 1.00

1.00

0.87 -0.82 0.58 1.00

0.49 0.58 1.00

0.75 -0.63 0.82 0.58 1.00

0.73 -0.77 0.66 0.64 1.00

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 16: Correlations between model parameters (Significance p < 0.05 Bonferroni
corrected). The model parameters show many correlations between each other indicating
strong compensatory effects where multiple parameter sets can lead to the same firing
properties. The only parameter without correlations to any other is tref showing a certain
independence compared to the other parameters.

4.3 Random Model Population

Finally the scaled parameter distributions of the fitted models were used to compute
a representative multivariate normal space out of which random parameter sets for the
model could be drawn. Each parameter distribution was fit by Gaussian function and
then tweaked by hand to remove overly wide Gaussian fits that would produce many
parameters outside of the observed distributions (fig. 17). The standard deviation of
the fits and the calculated correlations between the parameters were used to compute
the covariances. The covariances and the means of the Gaussian fits were then used to
compute the multivariate normal space.
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Figure 17: Gaussian fits (black) used as approximations for the parameter distributions.
All parameters except for tref and IBias were log transformed to get a more Gaussian-like
distribution. A: Logarithmic input scaling α, B: bias current IBias, C: Logarithmic mem-
brane time constant τm, D: Logarithmic noise strength

√
2D, E: Logarithmic adaption

time constant τA, F: Logarithmic adaption strength ∆A, G: Logarithmic time constant
of the dendritic low-pass filter τdend, H: refractory period tref .
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100 parameter sets were drawn and their distribution and correlation compared to the
parameters of fitted models to verify the drawing. The distributions depicted in figure
19 are for most parameters in good agreement. The distributions of the input scaling
α and the adaption strength ∆A are a bit shifted from the reference distribution and
the distribution of the bias current IBias does not show the tail towards negative values.
The correlations also show differences even though they are part of the computation of
the multivariate normal space. The drawn parameter sets have three missing and one
additional correlation. The missing correlations are between τdend and

√
2D, τdend and

∆A and τA and α, while the correlation between α and τm was only found in the drawn
parameter sets. This calculation was repeated a few times during the analysis and these
four correlations were inconsistent in the drawn models indicating they may not be well
defined in the calculated covariances.

Even with these differences the firing property distributions (fig. 20) shown by the
random models show large overlaps. The baseline firing rate distribution of the random
models show that there are too few models with low firing rates and the distribution
also has a long tail up too 800 Hz which does not match the cells. The serial correlation
distribution is shifted towards weaker negative correlations. The worst fit distribution is
the VS where the random models have a nearly distinct distribution compared to the cells
with lower VS.

I Bias m 2D A A
de

nd t re
f

IBias

m

2D

A

A

dend

tref

1.00

-0.92 1.00

1.00

0.87 -0.82 0.58 1.00

0.49 0.58 1.00

0.75 -0.63 0.82 0.58 1.00

0.73 -0.77 0.66 0.64 1.00

1.00

A Fitted Models

I Bias m 2D A A
de

nd t re
f

1.00

-0.78 1.00

0.50 1.00

0.83 -0.65 0.66 1.00

0.52 1.00

0.75 -0.58 0.76 0.60 1.00

0.66 -0.68 1.00

1.00

B Drawn Models

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Correlation Coefficients

Figure 18: Parameter correlation comparison between the fitted parameters and the ones
drawn from the multivariate normal distribution. There are four correlations that do not
agree between the two, but those are inconsistent in the drawn models (see discussion).
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ones (orange). A: input scaling α, randomly drawn parameters are shifted to higher
values. B: Bias current IBias doesn’t match the long tail into the negative. C: membrane
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Figure 20: Distribution of firing properties from randomly drawn models (orange) and
the original cells (blue). The distribution of the seven firing properties agree well, but
especially the vector strength (VS) in C is offset to the distribution seen in the cells and
shows manly lower values and the burstiness and SC are also slightly offset.
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5 Discussion

In this thesis a simple model based on the leaky integrate-and-fire (LIF) model was
developed to allow the simulation of a neuron population that correctly represents the
heterogeneity of P-units in the electrosensory pathway of the electric fish A. leptorhynchus.
The LIF model was extended by an adaption current, a refractory period and simulated
the input synapses by rectifying and low-pass filtering the input current, building on the
model proposed by Walz (2013). This model was then fit to in vivo recordings of single P-
units characterized by seven firing properties and the resulting models were compared to
their respective reference cell. Additionally estimates of the distributions and covariances
of the model parameters were used to draw random parameter sets. Simulations of these
generated populations were compared with the data. The previously proposed model by
Walz (2013) was limited to only non bursting P-units, but the extension allows now also
the simulation of bursting neurons. The model proposed by Chacron et al. (2001) also
models the P-units with a extended LIF neuron but uses a dynamic threshold to add the
negative ISI correlation, instead of an adaption current as used here. This causes the
the neuron to display divisive adaption (Benda et al., 2010) instead of the substractive
adaption shown in P-units (Benda et al., 2005). Their model was also only shown for one
representative neuron of bursting non-bursting cells.

5.1 Model fit

The dendritic low-pass filter and the refractory period were necessary for the model to
match the firing behavior of the P-units (fig. 7). As Walz (2013) demonstrated a model
without the low-pass filter is not able to match the VS and locks too strongly to the EOD.
A refractory period tref is necessary for the model to deviate from the ISI histogram shown
by continuously firing P-units (fig. 2 D) and show bursting behavior and is flexible enough
to match different strengths of burstiness.

With these additions the behavior of the cells was generally matched well by the
models with very similar final distributions of the firing properties but there were some
limitations. The model failed to reproduce cells with a very high burstiness (long bursts
with long pauses between) and as such a high coefficient of variation could not fully be
matched by the model (fig. 12). The example of fig. 8 A is a case where the model can
show this type of firing behavior (long bursts and pauses) yet it seems difficult to reach the
parameter configuration needed with the fitting approach used. In contrast to this, the
firing behavior of the cells in fig. 8 B and C are not possible for the model in its current
form. The addition of the refractory period tref does not also allow for an increased firing
probability at the 2nd EOD period and the cell C shows a higher order structure in its
ISI histogram on a comparatively long timescale which the proposed simple model cannot
reproduce. These kind of cells showing higher order structure in their ISI histogram are
rare but might provide interesting insights in the physiological properties of P-units when
further studied.

Two firing properties had a high spread in the fitted models. In the serial correlation
the models had some tendency to underestimate the cell’s SC. The second property was
the slope of the f0 response. Here one possible source is that the fitted Boltzmann function
and its slope are quite sensitive to miss-detections of spikes. A wrong estimate of the firing
frequency for a single contrast can strongly influence the slope of the fitted Boltzmann
function. Unlike the baseline firing properties there do not seem to be cases in which
the model cannot fit the f-I curves. The problematic cases shown in figure 10 are both
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generally possible (fig. 9) so improvements in the cost function and fitting routine should
also further improve the model consistency for the adaption responses.

Comparing the correlation between the firing properties of the data and the models
clear discrepancies could be seen, (fig. 14) with four additional and one missing significant
correlation. The added correlation between bursts and baseline firing rate could be a result
of the slightly stronger correlations between CV and base rate and between bursts and
CV. The difficulties of the model to fit strongly bursting cells with a long pause between
bursts could also have introduced this correlation as these cells would show high burstiness
and a low firing rate. The correlation between f0 slope and base rate might also be caused
by a slight increase in the correlations between f∞ slope and base rate and f∞ slope and
f0 slope. The other two added correlations are between the SC and the base rate as
well as the f∞ slope, where the former may again have caused the latter because of the
correlation between f∞ and base rate. Finally the one missing correlation in the models
is the one between base rate and VS, which is an unexpected correlation. This was also
looked at in Walz (2013), but only 23 exclusively non bursting cells were used, which
makes a direct comparison difficult. The data there shows the correlation between SC
and base rate which is shown by the models in this work. This might indicate that the
highest bursting cells that are not fitted well remove this correlation from the population
in the data or that there is not enough data to robustly define the correlation.

The parameters of the fitted models also show extensive correlations between each
other. This is an indication of strong compensation effects between them (Olypher and
Calabrese, 2007). Which is especially clear for the input gain α and the bias current IBias
that have a nearly perfect correlation and control the models baseline firing rate together.
Note that the refractory period tref is the only completely independent variable. This
might show a certain independence between the strength of the burstiness and the other
firing characteristics, which could be more closely investigated by looking at the sensitivity
of models firing properties to changes in tref .

5.2 Heterogeneous Population

The correlations and the estimated parameter distributions were used in form of their
covariances to draw random parameter sets from a multivariate normal distribution. The
drawn parameters show the expected distributions but different correlations. That could
mean that the 54 models used to calculate them were to few to give enough statistical
power for the correct estimation of all correlations. Drawing more models and compen-
sating for the increase in power showed that the involved correlations stay inconsistent,
which points to an uncertainty already in the measured covariance matrix of the data.
This could be further investigated with a robustness analysis estimating the reliability of
the computed covariances.

The firing behavior shown by the drawn models on the other hand fits the ones of the
data quite well except for the VS, where it is consistently underestimating the VS of the
data.

5.3 Conclusion

In general the model is the first that takes the burstiness as a continuum into account
and is able to accurately describe the firing behavior in a large part of the behavior
space of the P-units. But further testing is required to get a clearer picture where and
why discrepancies exist. An important next step is the verification of the models with
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a different type of stimulus. For this a stimulus with random or sinusoidal amplitude
modulations could be used. The correlations also need further investigation. As a first
step a robustness test could be done to estimate if there are correlations that are not well
characterized in both the cells and the models.

The coding properties of bursting and non-bursting neurons differ as well as their
means of decoding (Chacron et al., 2004). That means the full breadth of neuron types is
important to get a accurate image of what and how information is encoded in a heteroge-
neous population. But this type of research is not possible in vivo because it is not possible
to record intracellularly from so many neurons at once. The proposed model allows the
simulation of such a heterogenic population, allowing researchers to investigate whether
or why heterogenic population are necessary to encode behaviorally relevant stimuli and
which type of cells encode for which parts of them.
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