from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus as SAM from models.LIFACnoise import LifacNoiseModel import numpy as np import matplotlib.pyplot as plt import helperFunctions as hF from CellData import CellData def main(): # 2012-12-13_ao fit and eod frequency: parameters = {'mem_tau': 0.0133705462739553, 'tau_a': 0.06682759542588587, 'input_scaling': 60.766243690761144, 'v_base': 0, 'step_size': 5e-05, 'dend_tau': 0.0008667253013050408, 'v_zero': 0, 'v_offset': -6.25, 'noise_strength': 0.03337309379328535, 'a_zero': 2, 'threshold': 1, 'delta_a': 0.0726267312975076} eod_freq = 658 cell_data = CellData("./data/2012-12-13-ao-invivo-1/") model = LifacNoiseModel(parameters) mean_duration = np.mean(cell_data.get_sam_durations()) contrasts = cell_data.get_sam_contrasts() spiketimes = cell_data.get_sam_spiketimes() for i, m_freq in enumerate(cell_data.get_sam_delta_frequencies()): stimulus = SAM(eod_freq, contrasts[i], m_freq) prob_desnity_function_model = generate_pdf(model, stimulus, sim_length=mean_duration) for spikes in spiketimes[i]: prob_density_cell = spiketimes_calculate_pdf(spikes, cell_data.get_sampling_interval()) plt.plot(prob_density_cell) plt.plot(prob_desnity_function_model) plt.show() plt.close() # __init__(carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1) mod_freqs = np.arange(-60, eod_freq*4 + 61, 10) sigma_of_pdfs = [] for m_freq in mod_freqs: print(m_freq, "max: {:.2f}".format(mod_freqs[-1])) stimulus = SAM(eod_freq, 0.2, m_freq) prob_density_function = generate_pdf(model, stimulus) buffer = 0.25 buffer_idx = int(buffer / model.get_parameters()["step_size"]) sigma_of_pdfs.append(np.std(prob_density_function[buffer_idx:-buffer_idx])) normed_mod_freqs = (mod_freqs + eod_freq) / eod_freq plt.plot(normed_mod_freqs, sigma_of_pdfs) plt.savefig("./figures/sam/test.png") plt.close() pass def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005): trials_rate_list = [] step_size = model.get_parameters()["step_size"] for _ in range(trials): v1, spikes = model.simulate(stimulus, total_time_s=sim_length) binary = np.zeros(int(sim_length/step_size)) spikes = [int(s / step_size) for s in spikes] for s_idx in spikes: binary[s_idx] = 1 kernel = gaussian_kernel(kernel_width, step_size) rate = np.convolve(binary, kernel, mode='same') trials_rate_list.append(rate) times = [np.arange(0, sim_length, step_size) for _ in range(trials)] t, mean_rate = hF.calculate_mean_of_frequency_traces(times, trials_rate_list, step_size) return mean_rate def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005): length = int(spikes[-1] / step_size)+1 binary = np.zeros(length) spikes = [int(s / step_size) for s in spikes] for s_idx in spikes: binary[s_idx] = 1 kernel = gaussian_kernel(kernel_width, step_size) rate = np.convolve(binary, kernel, mode='same') return rate def gaussian_kernel(sigma, dt): x = np.arange(-4. * sigma, 4. * sigma, dt) y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma return y if __name__ == '__main__': main()