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The identification of peaks is fundamental in the processing of physiological signals. For
example, it is common to the analysis of electrocardiograms, electroencephalograms, sympa-
thetic neuronal activity, pulse oximetry, respiratory movement, hormone pulse secretion, and
even chromatography. Often it is necessary to detect peaks in real time, but the task is frequently
complicated by baseline wander and other interference. Current approaches to the problem
tend to be complicated, specific to a particular domain, and reliant on several tunable parameters.
There is a need for a simple and general mathematical formalization of peaks and troughs that
has easily examinable properties and is readily implementable as an efficient algorithm. In this
paper we present such a mathematical model together with an algorithm for the detection of
peaks and troughs. We illustrate the generality of the method with some actual physiological
data. q 1999 Academic Press
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INTRODUCTION

Medical research and modern clinical practice increasingly involve the recording
of continuous physiological signals (1). A fundamental task in the analysis of such
signals is the detection of peaks and troughs: for example, the components of the
electrocardiogram (2), the waves of the electroencephalogram (3), sympathetic
neuronal activity in experimental animals (4, 5), respiratory peak inspiration and
end-expiration (6), pulses of episodic hormone secretion (7), and the spectral peaks
of the chromatograph (8). Often it is necessary to detect peaks in real time, but the
task is frequently complicated by baseline wander and other types of interference.

In some applications, if the signal is adequately smoothed, it is sufficient simply
to identify all local maxima: an example is the counting of smooth muscle contrac-
tions (9). However, in many applications the signal to noise ratio in the frequency
band of interest is low. In these circumstances a statistical approach is often used
to determine whether a significant rise or fall in the signal level has occurred,
for example when monitoring sympathetic neuronal activity (4, 5) or analyzing
sequential hormone assays (7, 10). The null hypothesis is that there is no change
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in the signal level. A peak is thus characterized by a significant rise followed by
a significant fall in the signal level. Alternatively, in the absence of a statistical
model, an empirical threshold is set: for example, in one approach to electroencepha-
logram analysis a peak has been defined as a sample that is greater than both its
predecessor and its successor by a predetermined threshold amount (3). This local
definition of a peak overcomes the problem of baseline drift. A variation of the
method entails maintaining three adjacent sliding windows: a peak is detected if
the average of the middle window is greater (by some threshold) than the averages
of the two adjacent ones (11, 12). Rather than define peaks and troughs locally,
many peak detection algorithms first remove the baseline variation (if present) and
then define a peak as a threshold excursion above the baseline. Examples are the
detection of QRS complexes in electrocardiograms (13), the detection of pulses
of hormone secretion (14), the identification of ultrasound echoes (15), and the
analysis of peaks in the frequency spectrum of lung sounds (16). A straightforward
way of removing baseline variation is to convolve the signal with a differentiating
(and possibly smoothing) filter: peaks and troughs can then be identified as zero
crossings. For example, this has been successful in electrocardiogram analysis (17,
18) and in the identification of end-inspiration in respiratory movement recordings
(6), although differentiation does tend to amplify high frequency noise. More
sophisticated approaches to peak detection include pattern recognition by means
of neural networks. For example, this has been employed for the analysis of peaks
in infrared spectra (19).

In summary, therefore, although there are many different approaches to peak
detection they tend to be rather complicated and they are often tailored to a
particular domain, for example, electrocardiogram analysis (20). On the other
hand, more generally applicable methods typically depend on numerous tunable
parameters, for example (21) and (22), both of which require no less than four
user-selected values. A simple and general mathematical definition of peaks and
troughs is needed that has easily examinable properties and is readily implementable
as an efficient algorithm. This requirement is perhaps underlined by one compara-
tive empirical study (7) of eight pulse-detection programs for hormone assay
analysis: three of the eight programs were found to produce roughly similar results
to each other but were distinct from the other five. Moreover, even the three most
concordant programs failed to identify the same particular peaks on approximately
28% of occasions.

In this paper we present a simple mathematical formalization of a “peak” and
a “trough” that should be relevant to a wide range of physiological applications.
The model is declarative in character and is defined in just a few lines. The
properties of the model are examined by means of lemmas and seen to be intuitive.
A total of 14 lemmas are stated without proof : all follow easily from the respective
definitions and are simple manipulations in logic and set theory. (Details can be
found in (23).) For convenience we adopt the notational conventions of the Z
specification language because they are fully documented elsewhere (24); we
provide a brief glossary of Z symbols in the appendix. We also present an efficient
and easily programmed algorithm for identifying the peaks and troughs in a signal
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in accordance with the model and we illustrate the generality of the method with
some actual physiological data. A strength of the algorithm is that it entails only
a single pass along the input signal and so is suitable for on-line use for real-time
identification of peaks and troughs.

FORMALISM

First consider a “physiological signal.” It comprises a finite number of sequential
discrete samples of some variable of interest. For example, a single channel electro-
cardiogram is a sequence of samples of the voltage on one particular lead, usually
at a fixed frequency of 250 or 500 Hz; a sequential hormone assay is a series of
measurements of the circulating level of a particular hormone, usually at fixed
intervals of say 10 min; a respiratory movement recording is a sequence of samples
of the voltage across a transducer, usually at a fixed frequency of about 20 Hz.

Since all measurements are in practice made with finite precision, any physiologi-
cal sample can, with suitable scaling, be represented by an integer. For simplicity
therefore, we regard a physiological signal as a sequence of integers:

Signal = seq Z. [1]

Consider now the nature of a peak in a signal. Let q be an arbitrary signal and let
indices i and j refer to arbitrary elements (samples) in q. A peak in q is a maximal
element that locally “dominates” its surroundings by some positive, predetermined
threshold (d). We say that element j dominates element i precisely when q[j ]
exceeds q[i] by at least d and the signal between i and j is bounded below by q[i]
and above by q[j ]. This last requirement captures the notion of the domination

being “local.” Let i a
d

q
j mean that in signal q element i is dominated by a subsequent

element j. Correspondingly, let j s
d

q
i mean that element i is dominated by a preced-

ing element j:

a , s : N1 → Signal → N } N [2]

∀d : N1; q : Signal; i, j : N ●

i a
d

q
j ⇔ 1 # i # j # #q ` q[i] 1 d # q[ j ] ` q(.i . . j.) # (q[i] . . q[ j ])

j s
d

q
i ⇔ 1 # j # i # #q ` q[i] 1 d # q[ j ] ` q(. j . . i.) # (q[i] . . q[ j ]).

A peak element of q is any element that dominates both a preceding element and
a subsequent element. Correspondingly, a trough element is any element that is
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dominated both by a preceding element and by a subsequent element. Let pd (q)
and td (q) denote, respectively, the peak and the trough elements of q:

p, t : N1 → Signal → PN

∀d: N1; q : Signal ● [3]

pd (q) 5 ran (a
d

q
) ù dom (s

d

q
)

td (q) 5 ran (s
d

q
) ù dom (a

d

q
).

SOME LEMMAS

Notice first that domination is a strict partial order (irreflexive, antisymmetric,
and transitive).

Lemma 1. Irreflexivity:

d : N1; q : Signal £ (s
d

q
) ù id 5 { } ` (a

d

q
) ù id 5 { }.

Lemma 2. Antisymmetry:

d : N1; q : Signal £ (s
d

q
) ù (s

d

q
)21 5 { } ` (a

d

q
) ù (a

d

q
)21 5 { }.

Lemma 3. Transitivity:

d : N1; q : Signal £ (s
d

q
) 89 (s

d

q
) # (s

d

q
) ` (a

d

q
) 89 (a

d

q
) # (a

d

q
).

Notice that no element can simultaneously dominate to the left and be dominated
from the left. Similarly, no element can simultaneously dominate to the right and
be dominated from the right.

Lemma 4. Exclusivity:

d : N1; q : Signal £ ran (s
d

q
) ù ran (a

d

q
)

5 { } ` dom (s
d

q
) ù dom (a

d

q
) 5 { }.

It therefore follows that no element can be both a peak and a trough.

Lemma 5. Uniqueness:

d : N1; q : Signal £ pd (q) ù td (q) 5 { }
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Consider a mirror function m that reflects the indices of a sequence:

m = lq : Signal ● li : dom q ● #q 2 i 1 1. [4]

Thus m(q)89 q is the reverse of sequence q and m(q)0
9 m(q) is the identity function

on the domain of q.
It follows that the peaks (respectively troughs) of a reversed signal are the mirror

image of the peaks (respectively troughs) of the original signal. In other words,
peak and trough identification commute with reflection.

Lemma 6. Reflection:

d : N1; q : Signal £ m(q)(.pd (q).)
5 pd (m(q)89 q) ` m(q)(.td (q).) 5 td (m(q)89 q).

Similarly, consider an inversion function h that negates integers:

h = lz : Z ● 2z. [5]

Thus q89 h is the inversion of sequence q.
It follows that the peaks (respectively troughs) of an inverted signal are the

troughs (respectively peaks) of the original signal.

Lemma 7. Inversion:

d : N1; q : Signal £ h(.pd (q).) 5 td (q89 h) ` h(.td (q).) 5 pd (q89 h).

The left and right domination relations enlarge monotonically as the threshold
is lowered.

Lemma 8. Antimonotonicity of domination:

d, « : N1; q : Signal . d # « £ (s
d

q
) $ (s

d

q
) ` (a

d

q
) $ (a

d

q
).

Consequently the set of peak (respectively trough) elements enlarges monotonically
as the threshold is lowered.

Lemma 9. Antimonotonicity of peaks and troughs:

d, « : N1; q : Signal . d # « £ pd (q) $ p« (q) ` td (q) $ t« (q).

Furthermore, the left and right domination relations enlarge monotonically as the
signal is extended.

Lemma 10. Monotonicity of domination:

d : N1; p, q : Signal . p # q £ (s
d

p
) # (s

d

q
) ` (a

d

p
) # (a

d

q
).
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Therefore the peaks (respectively troughs) of a signal are a superset of the peaks
(respectively troughs) of any prefix of the signal.

Lemma 11. Monotonicity of peaks and troughs:

d : N1; p, q : Signal . p # q £ pd ( p) # pd (q) ` td ( p) # td (q).

If a signal is extended then any newly created peak lies after any peak or trough
in the original signal.

Lemma 12. Peak creation:

d : N1; p, q : Signal; i, j : N . p # q ` i P (pd ( p) ø td ( p))
` j P (pd (q) 2 pd ( p)) £ i , j.

Similarly, if a signal is extended then any new trough also lies after any peak or
trough in the original signal.

Lemma 13. Trough creation:

d : N1; p, q : Signal; i, j : N . p # q ` i P (pd( p) ø td ( p))
` j P (td(q) 2 td( p)) £ i , j.

However, neither the first nor the last element of a signal can be a peak or trough.

Lemma 14. Containment:

d : N1; q : Signal £ pd(q) # (2 . . (#q 2 1)) ` td (q) # (2 . . (#q 2 1)).

AN ALGORITHM

Table 1 shows a procedure (PT ) that computes the peak (P) and trough (T )
elements of the signal (Q) that is given as the first argument. Local variable i is
used as an index into Q, counting from the first element (Q[1]) to the last element
(Q[#Q]). Within the while loop, variable d indicates the direction of the signal:

d 5 ↑ . . . proceeding from a trough to a peak,

d 5 ↓ . . . proceeding from a peak to a trough,

d 5 ? . . . direction indeterminate.

Variable a records the index of a maximal element since the last trough. Correspond-
ingly, variable b records the index of a minimal element since the last peak. Variable
S records the indices (there may be more than one) of the maximal elements since
the last trough if the signal is rising (d 5 ↑) or those of the minimal elements
since the last peak if the signal is falling (d 5 ↓). The threshold d is assumed to
be a global constant.

In order to understand how the algorithm works, consider first the case that
during execution of the body of the loop the current direction of the signal is up
(d 5 ↑). Notice that if the current element Q[i] is strictly greater than the previous
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TABLE 1

Procedure PT for Computing Peaks and Troughs

procedure PT (value Q : Signal; result P, T: PN) =
var S: PN a, b, i : N d: {?, ↑, ↓} ●
P, T, S, a, b, i, d :5 { }, { }, { }, 1, 1, 0, ?;
do i Þ # Q →

i :5 i 1 1;
if d 5 ? → if Q[a] $ Q[i] 1 d → d :5 ↓

[ ] Q[i] $ Q[b] 1 d → d :5 ↑
fi;
if Q[a] , Q[i] → a :5 i
[ ] Q[i] , Q[b] → b :5 i
fi;
S :5 {i}

[ ] d 5 ↑ → if Q[a] , Q[i] → S, a :5 {i}, i
[ ] Q[a] 5 Q[i] → S :5 S ø {i}
[ ] Q[a] $ Q[i] 1 d → P, S, b, d :5 P ø S, {i}, i, ↓
fi

[ ] d 5 ↓ → if Q[i] # Q[b] → S, b :5 {i}, i
[ ] Q[i] 5 Q[b] → S :5 S ø {i}
[ ] Q[i] $ Q[b] 1 d → T, S, a, d :5 T ø S, {i}, i, ↑
fi

fi
od

highest level Q[a] since the last trough then both S and a are updated. If the current
element is equal to the previous highest level then it too is maximal and its index
is added to the others in set S. If the current element is strictly less than the previous
highest then no action is taken unless the current element is d or more below the
previous highest. In the later case the current element is dominated by all the
members of S which are all equivalent peak elements since they also dominate at
least one previous trough element. A peak having now been passed, the direction
d is reversed and the current element is the unique minimal element since the last
peak. (The case that d 5 ↑ is similar.) The algorithm thus continues to alternate
between peak and trough detection as the direction switches back and forth. This
oscillatory process begins immediately when an element is encountered that is at
least d above or below some previous element.

Notice that there is no requirement that individual peak elements alternate with
individual trough elements: for example, if a peak has a flat top then all its maximal
elements are peak elements. Often we do not wish to enumerate the indices of all
the maximal elements of a peak or all the minimal elements of a trough, but would
rather place a single representative marker on each peak and trough. Algorithm
PT is easily modified to identify just the last maximal element of each peak and
last minimal element of each trough: replace the assignment P, S, b, d :5 P ø S,
{i}, i, ↓ by P, b, d :5 P ø {i}, i, ↓ and make a similar change to the corresponding
assignment T, S, a, d :5 T ø S, {i}, i, ↑. Set S is then redundant and should therefore
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be eliminated from the algorithm thus saving the overhead of implementing a
set type. If all occurrences of , are replaced by # then the algorithm computes
the first rather than the last of each set of peak and trough elements. However,
the choice of first or last seems arbitrary and the symmetry embodied in Lemma
6 is of course lost. Better alternatives are to compute either the mid-point between
the first and last elements or the mean of the indices, although neither of these is
necessarily an integer. The mean is computed by simply replacing S with two
integer-type variables, one of which stores the sum of the elements in S and the
other of which stores the cardinality of S. The median point is a third alternative,
but computation of the median does of course require that all the points in set S
are stored temporarily during each peak/trough phase.

SOME EXAMPLES

Respiratory Excursions

Application of the algorithm is best illustrated with some examples of actual
physiological data. Figure 1 shows part of a recording of the respiratory movements
of a neonate who exhibits intermittent apnea. Transducers were placed on both the

FIG. 1. Neonatal chest movement recording (8-bit data sampled at 20 Hz) showing peaks and
troughs as detected with threshold d 5 20.
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chest and the abdomen: the displayed signal represents the sum of the outputs of
the two sensors. The measurements are on an integral scale 0 to 255 with a sampling
frequency of 20 Hz. The peak and trough elements were identified using procedure
PT with a threshold (d) of 20; they are marked, respectively, by vertical lines
above and below the tracing. Each thick vertical line represents a cluster of adjacent
peak elements or adjacent trough elements. Notice that some of the smaller peaks
and troughs (those whose height is less than 20) are missed: the parameter d should
be set to the height of the smallest peak or trough that should be detected.

Figure 2 shows the same recording as Fig. 1 but marked with a threshold of 2
rather than 20. Notice that all significant peaks and troughs are now identified.
Notice also that the peak and trough elements are a superset of those identified
with d 5 20 (Lemma 9).

Electrocardiogram QRS Complex Detection

The peak detection algorithm has more general application. One approach to
the identification of particular features in a signal is to transform the signal by
application of a feature identification function. The task of identifying the features

FIG. 2. Neonatal chest movement recording (corresponding to Fig. 1) showing peaks and troughs
as detected with threshold d 5 2.
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then becomes one of identifying peaks in the transformed signal. For example, the
usual transformation used in the identification of QRS complexes in electrocardio-
grams is to rectify and smooth the first or second derivatives (25, 26), or the sum
of the two (27). Simple threshold methods are usually employed for detecting
peaks in the transformed signal since baseline wander is largely eliminated by
derivative transformation. However, the peak detection algorithm described in this
paper is possibly more robust because the peaks of the transformed signal may have
irregular shapes that otherwise cause confusion. We illustrate this with an example.

Figure 3 shows a portion of a child’s electrocardiogram sampled at 100 Hz. The
T waves are rather pronounced and there is incidentally a gross movement artifact.
Figure 4 shows the same signal after a derivative transformation has been applied.
The transformation entails squaring and then smoothing the second derivative. The
second derivative of signal q at position i is given simply by q[i 2 1] 2 2q[i] 1
q[i 1 1]. Smoothing is achieved by convolving with an equilateral triangular kernel
of width 0.1 s (about the duration of a QRS complex) at its mid-point (i.e., 0.2 s
at its base). Variations in the sizes of the peaks is then reduced by taking the square
root of all elements of the transformed signal. Notice how stable the transformed
signal is despite the movement artifact in the original signal: each large peak

FIG. 3. Electrocardiogram of a child with tachycardia (8-bit data sampled at 100 Hz) showing a
large movement artifact.
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FIG. 4. Transformation of the ECG shown in Fig. 3 by smoothing the squared second derivative
and then taking the square root: each large peak corresponds to a QRS complex and each small peak
corresponds to a T wave.

corresponds to a QRS complex. Notice also that on the falling edge of each large
peak is a small peak that corresponds to the T wave. Although the absolute level
of the small peaks is about 30% or so of that of the large peaks, the rising edges
of the small peaks are less than 10% of the length of the rising edges of the large
peaks. Since the objective is to detect the large peaks (QRS complexes) while
rejecting the small peaks (T waves), our algorithm is likely to discriminate between
the two kinds of peak better than a fixed threshold above the baseline: the vertical
lines marking the QRS complexes in Fig. 3 are those obtained by applying the
peak detection algorithm to the transformed signal shown in Fig. 4 with a threshold
(d) of 5.

DISCUSSION

In this paper we have presented a formal mathematical definition of peaks and
troughs in a signal. We have then enumerated and examined the properties of the
model by means of lemmas. The model is logically equivalent to an earlier definition
proposed by Marshall (28), but has a different structure that suggests a different
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implementation. Marshall’s model was developed with the analysis of chromato-
graph spectra in mind. In that application it is often necessary to generate “threshold
plots” of the number of peaks against the threshold employed for peak detection.
Marshall’s algorithm entails multiple passes through the data, successively eliminat-
ing the smallest peaks. This is quite feasible of course for the analysis of chromato-
graph peaks. However, our algorithm requires only one pass and so is suitable for
continuous on-line physiological monitoring too. Indeed, as we have shown, our
peak detection algorithm has a potentially wide application, not only to the identifi-
cation of the maxima and minima in physiological signals, but also to on-line
feature identification via signal transformation.

The usual kind of transformations employed entail rectification and smoothing
of first or second derivatives of the original signal. Such transformations are used
for the identification of the start of inspiration in respiratory recordings (6) and in
particular for the detection of QRS complexes in electrocardiograms (26, 29).
Usually the transformations are invariant to signal inversion and commute with
signal reflection. Since our peak detection algorithm also commutes with signal
reflection (Lemma 6), our entire QRS detector shares the two properties too. This
corresponds to the familiar, empirical observation that a QRS complex remains
just as recognizable to the human eye when the electrocardiogram is turned upside
down or even viewed in a mirror. Not all QRS detection algorithms, however,
have this intuitive property (e.g., (13)), especially if latency periods are included
in the peak detection algorithm: (26) lists several examples. However, derivative
transformations are by no means the only kind used for physiological feature
identification. For example, neural networks form the basis of a rather different
method of QRS detection (30, 31). A perceptron is used as a predictive filter that
models the P and T waves but does not model the QRS: the QRS is thus signalled
by a large error signal.

We now intend to try the peak detection algorithm in as wide a range of
applications as possible. The simplicity of the algorithm makes it ideal for imple-
mentation in hardware. Coupled with suitable transformations, this holds promise
for continuous on-line monitoring of heart rate and other physiological variables
in the ambulatory and intensive care setting.

APPENDIX: GLOSSARY

The following glossary should enable anyone unfamiliar with the Z specification
language to read the formal sections of this paper.

N1 The set of all nonzero natural numbers (5 N 2 {0}).
m . . n The set of natural numbers from m up to n inclusive.
S , T The set of all relations between S and T.
S → T The set of all total functions from S to T.
S →| T The set of all partial functions from S to T.
{x : T . P ● t} The set of all terms t over variable(s) x drawn from T

such that predicate P holds (if present). Term t may
be omitted if identical to x.
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lx : T . P ● t The function mapping to terms t the variable(s) x drawn
from T such that predicate P holds (if present). This
is identical to the set {x : T . P ● (x, t)}.

id The identity function (5 lx : T ● x) on given type T.
seq S The set of all finite sequences of elements drawn from

S. (In “Z” a sequence is regarded as a function from
an initial segment of the nonzero natural numbers to
the set of all possible elements.)

q[n] The nth element (5 q(n)) of sequence q.
#q The cardinality (i.e., length) of sequence q.
dom r The set of all elements in the domain of relation (or

function) r.
ran r The set of all elements in the range of relation (or

function) r.
r89 s The forward composition of relations (or functions) r

and s.
r(.S.) The image of set S through relation (or function) r.
r21 The inverse {x : S; y : T . (x, y) P r ● ( y, x)} of relation

(or function) r.
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