from CellData import CellData import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt from warnings import warn import functions as fu class FICurve: def __init__(self, cell_data: CellData, contrast: bool = True): self.cell_data = cell_data self.using_contrast = contrast if contrast: self.stimulus_value = cell_data.get_fi_contrasts() else: self.stimulus_value = cell_data.get_fi_intensities() self.f_zeros = [] self.f_infinities = [] self.f_baselines = [] # f_max, f_min, k, x_zero self.boltzmann_fit_vars = [] # offset increase self.f_infinity_fit = [] self.all_calculate_frequency_points() self.fit_line() self.fit_boltzmann() def all_calculate_frequency_points(self): mean_frequencies = self.cell_data.get_mean_isi_frequencies() if len(mean_frequencies) == 0: warn("FICurve:all_calculate_frequency_points(): mean_frequencies is empty.\n" "Was all_calculate_mean_isi_frequencies already called?") for freq in mean_frequencies: self.f_zeros.append(self.__calculate_f_zero__(freq)) self.f_baselines.append(self.__calculate_f_baseline__(freq)) self.f_infinities.append(self.__calculate_f_infinity__(freq)) def fit_line(self): popt, pcov = curve_fit(fu.clipped_line, self.stimulus_value, self.f_infinities) self.f_infinity_fit = popt def fit_boltzmann(self): max_f0 = float(max(self.f_zeros)) min_f0 = float(min(self.f_zeros)) mean_int = float(np.mean(self.stimulus_value)) total_increase = max_f0 - min_f0 total_change_int = max(self.stimulus_value) - min(self.stimulus_value) start_k = float((total_increase / total_change_int * 4) / max_f0) popt, pcov = curve_fit(fu.full_boltzmann, self.stimulus_value, self.f_zeros, p0=(max_f0, min_f0, start_k, mean_int), maxfev=10000, bounds=([0, 0, -np.inf, -np.inf], [3000, 3000, np.inf, np.inf])) self.boltzmann_fit_vars = popt def plot_fi_curve(self, savepath: str = None): min_x = min(self.stimulus_value) max_x = max(self.stimulus_value) step = (max_x - min_x) / 5000 x_values = np.arange(min_x, max_x, step) plt.plot(self.stimulus_value, self.f_baselines, color='blue', label='f_base') plt.plot(self.stimulus_value, self.f_infinities, 'o', color='lime', label='f_inf') plt.plot(x_values, [fu.clipped_line(x, self.f_infinity_fit[0], self.f_infinity_fit[1]) for x in x_values], color='darkgreen', label='f_inf_fit') plt.plot(self.stimulus_value, self.f_zeros, 'o', color='orange', label='f_zero') popt = self.boltzmann_fit_vars plt.plot(x_values, [fu.full_boltzmann(x, popt[0], popt[1], popt[2], popt[3]) for x in x_values], color='red', label='f_0_fit') plt.legend() plt.ylabel("Frequency [Hz]") if self.using_contrast: plt.xlabel("Stimulus contrast") else: plt.xlabel("Stimulus intensity [mv]") if savepath is None: plt.show() else: plt.savefig(savepath + "fi_curve.png") plt.close() def __calculate_f_baseline__(self, frequency, buffer=0.025): delay = self.cell_data.get_delay() sampling_interval = self.cell_data.get_sampling_interval() if delay < 0.1: warn("FICurve:__calculate_f_baseline__(): Quite short delay at the start.") idx_start = int(buffer/sampling_interval) idx_end = int((delay-buffer)/sampling_interval) return np.mean(frequency[idx_start:idx_end]) def __calculate_f_zero__(self, frequency, length_of_mean=0.1, buffer=0.025): stimulus_start = self.cell_data.get_delay() + self.cell_data.get_stimulus_start() sampling_interval = self.cell_data.get_sampling_interval() start_idx = int((stimulus_start - buffer) / sampling_interval) end_idx = int((stimulus_start + buffer*2) / sampling_interval) freq_before = frequency[start_idx-(int(length_of_mean/sampling_interval)):start_idx] fb_mean = np.mean(freq_before) fb_std = np.std(freq_before) peak_frequency = fb_mean count = 0 for i in range(start_idx + 1, end_idx): if fb_mean-3*fb_std <= frequency[i] <= fb_mean+3*fb_std: continue if abs(frequency[i] - fb_mean) > abs(peak_frequency - fb_mean): peak_frequency = frequency[i] count += 1 return peak_frequency def __calculate_f_infinity__(self, frequency, length=0.2, buffer=0.025): stimulus_end_time = \ self.cell_data.get_delay() + self.cell_data.get_stimulus_start() + self.cell_data.get_stimulus_duration() start_idx = int((stimulus_end_time - length - buffer) / self.cell_data.get_sampling_interval()) end_idx = int((stimulus_end_time - buffer) / self.cell_data.get_sampling_interval()) return np.mean(frequency[start_idx:end_idx]) def get_f_zero_inverse_at_frequency(self, frequency): b_vars = self.boltzmann_fit_vars return fu.inverse_full_boltzmann(frequency, b_vars[0], b_vars[1], b_vars[2], b_vars[3]) def get_f_infinity_frequency_at_stimulus_value(self, stimulus_value): infty_vars = self.f_infinity_fit return fu.clipped_line(stimulus_value, infty_vars[0], infty_vars[1]) def get_f_infinity_slope(self): return self.f_infinity_fit[1] def get_fi_curve_slope_at(self, stimulus_value): fit_vars = self.boltzmann_fit_vars return fu.derivative_full_boltzmann(stimulus_value, fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3]) def get_fi_curve_slope_of_straight(self): fit_vars = self.boltzmann_fit_vars return fu.full_boltzmann_straight_slope(fit_vars[0], fit_vars[1], fit_vars[2], fit_vars[3])