from models.LIFACnoise import LifacNoiseModel from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus import helperFunctions as hF import Figure_constants as consts import matplotlib.pyplot as plt import numpy as np import models.smallModels as sM def main(): # stimulus_development() # model_adaption_example() model_comparison() pass def isi_development(): model_params = consts.model_cell_1 pass def model_comparison(): step = 0.00001 duration = 0.5 stimulus = np.arange(0, duration, step) stimulus[0:8000] = 2 stimulus[8000:20000] = 0 stimulus[20000:] = 1 fig, axes = plt.subplots(5, 2, sharex=True, sharey="col", figsize=consts.FIG_SIZE_LARGE) axes[1, 0].set_title("Voltage") axes[1, 1].set_title("Frequency") axes[0, 0].plot(np.arange(0, duration, step)[:len(stimulus)], stimulus) axes[0, 0].set_ylabel("Stimulus") axes[0, 1].set_frame_on(False) axes[0, 1].set_axis_off() v1, spikes = sM.pif_simulation(stimulus, step) axes[1, 0].plot(np.arange(0, duration, step)[:len(v1)], v1) axes[1, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black") time, freq = hF.calculate_time_and_frequency_trace(spikes, step) axes[1, 1].plot(time, freq) axes[1, 0].set_ylabel("PIF") v1, spikes = sM.lif_simulation(stimulus, step) axes[2, 0].plot(np.arange(0, duration, step)[:len(v1)], v1) axes[2, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black") time, freq = hF.calculate_time_and_frequency_trace(spikes, step) axes[2, 1].plot(time, freq) axes[2, 0].set_ylabel("LIF") v1, spikes = sM.lifac_simulation(stimulus, step) axes[3, 0].plot(np.arange(0, duration, step)[:len(v1)], v1) axes[3, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black") time, freq = hF.calculate_time_and_frequency_trace(spikes, step) axes[3, 1].plot(time, freq) axes[3, 0].set_ylabel("LIFAC") v1, spikes = sM.lifac_ref_simulation(stimulus, step) axes[4, 0].plot(np.arange(0, duration, step)[:len(v1)], v1) axes[4, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black") time, freq = hF.calculate_time_and_frequency_trace(spikes, step) axes[4, 1].plot(time, freq) axes[4, 0].set_ylabel("LIFAC + ref") axes[4, 0].set_xlabel("Time [s]") axes[4, 1].set_xlabel("Time [s]") # v1, spikes = sM.lifac_ref_noise_simulation(stimulus, step) # axes[5, 0].plot(np.arange(0, duration, step)[:len(v1)], v1) # axes[5, 0].eventplot(spikes, lineoffsets=1.2, linelengths=0.2, colors="black") # time, freq = hF.calculate_time_and_frequency_trace(spikes, step) # print(np.mean(freq)) # axes[5, 1].plot(time, freq) plt.tight_layout() plt.savefig(consts.SAVE_FOLDER + "model_comparison.pdf") plt.close() def stimulus_development(): time_start = 0 time_duration = 0.025 stimulus = SinusoidalStepStimulus(745, 0.2, 0.1, 0.1) step_size = 0.00005 stim_array = stimulus.as_array(time_start, time_duration, step_size) rectified = hF.rectify_stimulus_array(stim_array) filtered = dendritic_lowpass(rectified, 0.0014, step_size) fig, axes = plt.subplots(3, 1, figsize=(6, 6), sharex="col") time = np.arange(time_start, time_duration, step_size) axes[0].plot(time, stim_array) axes[0].set_title("stimulus") axes[1].plot(time, rectified) axes[1].set_title("rectified stimulus") axes[2].plot(time, filtered) axes[2].set_title("rectified with dendritic filter") axes[0].set_ylim((-1.05, 1.05)) axes[1].set_ylim((-1.05, 1.05)) for ax in axes: ax.set_ylabel("Amplitude [mV]") axes[2].set_xlabel("Time [s]") axes[0].set_xlim((time_start-0.0005, time_duration)) # axes[2].set_ylim((0, 1.05)) plt.tight_layout() plt.savefig(consts.SAVE_FOLDER + "stimulus_development.pdf") plt.close() def dendritic_lowpass(stimulus, dend_tau, step_size): filtered = np.zeros(len(stimulus)) filtered[0] = stimulus[0] for i in range(1, len(stimulus), 1): filtered[i] = filtered[i - 1] + ((-filtered[i - 1] + stimulus[i]) / dend_tau) * step_size return filtered def model_adaption_example(): # TODO find a god example model parameter = consts.model_cell_2 model = LifacNoiseModel(parameter) # frequency, contrast, start_time=0, duration=np.inf, amplitude=1) frequency = 350 contrast = 0 start_time = 5 duration = 0 stimulus = SinusoidalStepStimulus(frequency, contrast, start_time, duration) time_start = 0 time_duration = 0.5 time_step = model.get_sampling_interval() v1, spikes = model.simulate(stimulus, total_time_s=time_duration, time_start=time_start) adaption = model.get_adaption_trace() time = np.arange(time_start, time_start+time_duration, time_step) fig, axes = plt.subplots(2, sharex=True, gridspec_kw={'height_ratios': [1, 1]}) # axes[0].plot(time, stimulus.as_array(time_start, time_duration, time_step)) start = 0.26 end = 0.29 start_idx = int(start / time_step) end_idx = int(end / time_step) time_part = time[start_idx:end_idx] # axes[0].plot(time[start_idx:end_idx], v1[start_idx:end_idx]) axes[0].eventplot([s for s in spikes if start < s < end], lineoffsets=1.2, linelengths=0.2, colors="black") # axes[0].set_ylim((0.5, 1.5)) # axes[0].set_frame_on(False) # axes[0].set_axis_off() # axes[0].set_ylabel("Spikes") axes[0].plot(time_part, v1[start_idx:end_idx]) axes[0].set_ylabel("Membrane voltage [mV]") # axes[1].plot(time[start_idx:end_idx], adaption[start_idx:end_idx]) axes[1].plot(time_part, adaption[start_idx:end_idx]) axes[1].set_ylabel("Adaption current [mV]") axes[1].set_xlabel("Time [ms]") axes[1].set_xlim((start, end)) plt.savefig(consts.SAVE_FOLDER + "adaptionExample.pdf") plt.close() if __name__ == '__main__': main()