from models.LIFACnoise import LifacNoiseModel
from Baseline import BaselineModel
from FiCurve import FICurveModel
import numpy as np
import matplotlib.pyplot as plt
import copy
import os


SEARCH_WIDTH = 3
SEARCH_PRECISION = 40
CONTRASTS = np.arange(-0.4, 0.45, 0.1)


def main():
    test_effect_of_two_variables()
    quit()
    model_parameters1 = {'threshold': 1,
                         'step_size': 5e-05,
                         'a_zero': 2,
                         'delta_a': 0.2032269898801589,
                         'mem_tau': 0.011314027210564803,
                         'noise_strength': 0.056724809998220195,
                         'v_zero': 0,
                         'v_base': 0,
                         'tau_a': 0.05958195972016753,
                         'input_scaling': 119.81500448274554,
                         'dend_tau': 0.0027746086464721723,
                         'v_offset': -24.21875,
                         'refractory_period': 0.0006}

    model_parameters2 = {'v_offset': -15.234375, 'input_scaling': 64.94152780134829, 'step_size': 5e-05, 'a_zero': 2,
                         'threshold': 1, 'v_base': 0, 'delta_a': 0.04763179657857666, 'tau_a': 0.07891848949732623,
                         'mem_tau': 0.004828473985707999, 'noise_strength': 0.017132801387559883,
                         'v_zero': 0, 'dend_tau': 0.0015230454266819539, 'refractory_period': 0.0006}

    parameters_to_test = ["input_scaling", "refractory_period", "dend_tau", "mem_tau", "noise_strength", "v_offset", "delta_a", "tau_a"]
    # parameters_to_test = ["refractory_period", "input_scaling"]
    effect_data = []
    for p in parameters_to_test:
        print("Working on parameter " + p)
        effect_data.append(test_parameter_effect(model_parameters2, p, 600))

    plot_effects(effect_data, "./figures/variable_effect/")


def test_effect_of_two_variables():
    eod_freqs = np.arange(100, 1001, 20)
    ref_periods = np.arange(0, 0.00201, 0.0001)
    variables = ("bf", "vs", "sc", "cv", "burst", "f_inf_s", "f_zero_s")
    colorbar_labels = ("Frequency in Hz", "Vector strength", "serial correlation lag=1", "Coefficient of Variation",
                       "Burstiness", "f_inf slope", "f_zero slope")

    # base eod frequency would be 771!
    base_parameters = {'step_size': 5e-05, 'mem_tau': 0.0076958612706114595, 'v_base': 0, 'v_zero': 0, 'threshold': 1,
                       'v_offset': -37.5, 'input_scaling': 181.40702315746051, 'delta_a': 0.333391796423963,
                       'tau_a': 0.17301586167067445, 'a_zero': 2, 'noise_strength': 0.017424670423939775,
                       'dend_tau': 0.0037179224836952356, 'refractory_period': 0.0010602702699897444}

    # base eod frequency would be 657!
    base_parameters = {'refractory_period': 0.0008347981797599925, 'v_base': 0, 'v_zero': 0, 'a_zero': 2,
                       'step_size': 5e-05, 'delta_a': 0.10570085698152036, 'threshold': 1,
                       'input_scaling': 85.7818875779873, 'mem_tau': 0.01094261953657057, 'tau_a': 0.07741757133763925,
                       'v_offset': -10.15625, 'noise_strength': 0.03080655781041302, 'dend_tau': 0.0013624430015225777}


    effects = []
    for eod_freq in eod_freqs:
        effects_with_const_eod_freq = []
        for ref_period in ref_periods:
            model_parameters = copy.deepcopy(base_parameters)
            model_parameters["refractory_period"] = ref_period
            effects_with_const_eod_freq.append(test_model(model_parameters, eod_freq))

        effects.append(effects_with_const_eod_freq)

    if not os.path.exists("./figures/eod_and_ref_period_effect/"):
        os.makedirs("./figures/eod_and_ref_period_effect/")

    for x, variable in enumerate(variables):
        matrix = np.zeros((len(eod_freqs), len(ref_periods)))
        for i in range(len(eod_freqs)):
            for j in range(len(ref_periods)):
                matrix[i, j] = effects[i][j][variable]

        fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))

        im = axes.imshow(matrix)
        cbar = axes.figure.colorbar(im, ax=axes)
        cbar.ax.set_ylabel(colorbar_labels[x], rotation=-90, va="bottom")

        axes.set_title(variable)
        axes.set_xlabel("Refractory periods in ms")
        axes.set_ylabel("EOD frequency in Hz")

        axes.set_xticks(np.arange(len(ref_periods)))
        axes.set_yticks(np.arange(len(eod_freqs)))
        # ... and label them with the respective list entries
        axes.set_xticklabels(["{:.2f}".format(r*1000) for r in ref_periods])
        axes.set_yticklabels(eod_freqs)
        plt.setp(axes.get_xticklabels(), rotation=45, ha="right",
                 rotation_mode="anchor")

        axes.set_ylabel("Eod frequencies")
        plt.tight_layout()

        plt.savefig("./figures/eod_and_ref_period_effect/" + variable + ".png")
        plt.close()


def test_model(model_parameters, eod_freq):
    model = LifacNoiseModel(model_parameters)
    print(model.get_parameters())

    fi_curve = FICurveModel(model, CONTRASTS, eod_freq, trials=10)
    f_inf_s = fi_curve.get_f_inf_slope()
    f_inf_v = fi_curve.get_f_inf_frequencies()
    f_zero_s = fi_curve.get_f_zero_fit_slope_at_stimulus_value(0.1)
    f_zero_v = fi_curve.get_f_zero_frequencies()

    baseline = BaselineModel(model, eod_freq, trials=3)
    bf = baseline.get_baseline_frequency()
    vs = baseline.get_vector_strength()
    sc = baseline.get_serial_correlation(1)[0]
    cv = baseline.get_coefficient_of_variation()
    burst = baseline.get_burstiness()

    return {"f_inf_s": f_inf_s, "f_inf_v": f_inf_v, "f_zero_s": f_zero_s, "f_zero_v": f_zero_v,
            "bf": bf, "vs": vs, "sc": sc, "cv": cv, "burst": burst}


def test_parameter_effect(model_parameters, test_parameter, eod_freq):
    model_parameters = copy.deepcopy(model_parameters)
    start_value = model_parameters[test_parameter]

    start = start_value*(1/SEARCH_WIDTH)
    end = start_value*SEARCH_WIDTH
    step = (end - start) / SEARCH_PRECISION
    values = np.arange(start, end+step, step)

    bf = []
    vs = []
    sc = []
    cv = []
    burst = []

    f_inf_s = []
    f_inf_v = []
    f_zero_s = []
    f_zero_v = []
    broken_i = []

    for i in range(len(values)):
        model_parameters[test_parameter] = values[i]
        model = LifacNoiseModel(model_parameters)

        fi_curve = FICurveModel(model, CONTRASTS, eod_freq, trials=10)
        f_inf_s.append(fi_curve.get_f_inf_slope())
        f_inf_v.append(fi_curve.get_f_inf_frequencies())
        f_zero_s.append(fi_curve.get_f_zero_fit_slope_at_stimulus_value(0.1))
        f_zero_v.append(fi_curve.get_f_zero_frequencies())

        if not os.path.exists("./figures/f_point_detection/"):
            os.makedirs("./figures/f_point_detection/")

        detection_save_path = "./figures/f_point_detection/{}_{:.4f}/".format(test_parameter, values[i])
        if not os.path.exists(detection_save_path):
            os.makedirs(detection_save_path)

        fi_curve.plot_f_point_detections(detection_save_path)

        baseline = BaselineModel(model, eod_freq, trials=3)
        bf.append(baseline.get_baseline_frequency())
        vs.append(baseline.get_vector_strength())
        sc.append(baseline.get_serial_correlation(2))
        cv.append(baseline.get_coefficient_of_variation())
        burst.append(baseline.get_burstiness())

    values = list(values)
    if len(broken_i) > 0:
        broken_i = sorted(broken_i, reverse=True)
        for i in broken_i:
            del values[i]

    return ParameterEffectData(values, test_parameter, bf, vs, sc, cv, burst, f_inf_s, f_inf_v, f_zero_s, f_zero_v)
    # plot_effects(values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v)


def plot_effects(par_effect_data_list, save_path=None):

    names = ("bf", "vs", "sc", "cv", "burstiness", "f_inf_s", "f_inf_v", "f_zero_s", "f_zero_v")

    fig, axes = plt.subplots(len(names), len(par_effect_data_list), figsize=(4*len(par_effect_data_list), 4*len(names)), sharex="col")

    for j in range(len(par_effect_data_list)):
        ped = par_effect_data_list[j]

        ranges = ((0, max(ped.get_data("bf")) * 1.1), (0, 1), (-1, 1), (0, 1), (0, 1),
                  (0, max(ped.get_data("f_inf_s")) * 1.1), (0, 800),
                  (0, max(ped.get_data("f_zero_s")) * 1.1), (0, 10000))
        values = ped.values

        for i in range(len(names)):
            y_data = ped.get_data(names[i])
            axes[i, j].plot(values, y_data)

            if names[i] == "f_zero_v":
                axes[i, j].set_yscale('log')
                axes[i, j].set_ylim(ranges[i])
            else:
                axes[i, j].set_ylim(ranges[i])

            if j == 0:
                axes[i, j].set_ylabel(names[i])

            if i == 0:
                axes[i, j].set_title(ped.test_parameter)

    plt.tight_layout()
    if save_path is not None:
        plt.savefig(save_path + "variable_effect_master_plot.png")
    else:
        plt.show()
    plt.close()


class ParameterEffectData:
    data_names = ("bf", "vs", "sc", "cv", "burstiness","f_inf_s", "f_inf_v" "f_zero_s", "f_zero_v")

    def __init__(self, values, test_parameter, bf, vs, sc, cv, burstiness, f_inf_s, f_inf_v, f_zero_s, f_zero_v):
        self.values = values
        self.test_parameter = test_parameter
        self.bf = bf
        self.vs = vs
        self.sc = sc
        self.cv = cv
        self.f_inf_s = f_inf_s
        self.f_inf_v = f_inf_v
        self.f_zero_s = f_zero_s
        self.f_zero_v = f_zero_v
        self.burstiness = burstiness

    def get_data(self, name):
        if name == "bf":
            return self.bf
        elif name == "vs":
            return self.vs
        elif name == "sc":
            return self.sc
        elif name == "cv":
            return self.cv
        elif name == "f_inf_s":
            return self.f_inf_s
        elif name == "f_inf_v":
            return self.f_inf_v
        elif name == "f_zero_s":
            return self.f_zero_s
        elif name == "f_zero_v":
            return self.f_zero_v
        elif name == "burstiness":
            return self.burstiness
        else:
            raise ValueError("Unknown attribute name!")


if __name__ == '__main__':
    main()