from models.LIFACnoise import LifacNoiseModel
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
from CellData import CellData
from Baseline import get_baseline_class
from FiCurve import get_fi_curve_class
from AdaptionCurrent import Adaption
import numpy as np
from warnings import warn
from scipy.optimize import minimize


class Fitter:

    def __init__(self, params=None):
        if params is None:
            self.base_model = LifacNoiseModel({"step_size": 0.00005})
        else:
            self.base_model = LifacNoiseModel(params)
            if "step_size" not in params:
                self.base_model.set_variable("step_size", 0.00005)

        #
        self.fi_contrasts = []
        self.eod_freq = 0

        self.sc_max_lag = 2

        # values to be replicated:
        self.baseline_freq = 0
        self.vector_strength = -1
        self.serial_correlation = []
        self.coefficient_of_variation = 0
        self.burstiness = -1

        self.f_inf_values = []
        self.f_inf_slope = 0

        self.f_zero_values = []
        # self.f_zero_slopes = []
        self.f_zero_slope_at_straight = 0
        self.f_zero_straight_contrast = 0
        self.f_zero_fit = []

        self.tau_a = 0

        # counts how often the cost_function was called
        self.counter = 0

    def set_data_reference_values(self, cell_data: CellData):
        self.eod_freq = cell_data.get_eod_frequency()

        data_baseline = get_baseline_class(cell_data)
        self.baseline_freq = data_baseline.get_baseline_frequency()
        self.vector_strength = data_baseline.get_vector_strength()
        self.serial_correlation = data_baseline.get_serial_correlation(self.sc_max_lag)
        self.coefficient_of_variation = data_baseline.get_coefficient_of_variation()
        self.burstiness = data_baseline.get_burstiness()

        fi_curve = get_fi_curve_class(cell_data, cell_data.get_fi_contrasts())
        self.fi_contrasts = fi_curve.stimulus_values
        self.f_inf_values = fi_curve.f_inf_frequencies
        self.f_inf_slope = fi_curve.get_f_inf_slope()

        self.f_zero_values = fi_curve.f_zero_frequencies
        self.f_zero_fit = fi_curve.f_zero_fit
        # self.f_zero_slopes = [fi_curve.get_f_zero_fit_slope_at_stimulus_value(c) for c in self.fi_contrasts]
        self.f_zero_slope_at_straight = fi_curve.get_f_zero_fit_slope_at_straight()
        self.f_zero_straight_contrast = self.f_zero_fit[3]

        # around 1/3 of the value at straight
        # self.f_zero_slope = fi_curve.get_fi_curve_slope_at(fi_curve.get_f_zero_and_f_inf_intersection())

        adaption = Adaption(fi_curve)
        self.tau_a = adaption.get_tau_real()

    def fit_model_to_data(self, data: CellData, start_parameters, fit_routine_func: callable):
        self.set_data_reference_values(data)
        return fit_routine_func(start_parameters)

    def fit_routine_1(self, start_parameters):
        self.counter = 0
        # fit only v_offset, mem_tau, input_scaling, dend_tau

        x0 = np.array([start_parameters["mem_tau"], start_parameters["noise_strength"],
                       start_parameters["input_scaling"], self.tau_a, start_parameters["delta_a"],
                       start_parameters["dend_tau"], start_parameters["refractory_period"]])
        initial_simplex = create_init_simples(x0, search_scale=2)

        # error_list = [error_bf, error_vs, error_sc, error_cv,
        #                       error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_weights = (0, 1, 1, 1, 1, 1, 1, 1, 1)
        fmin = minimize(fun=self.cost_function_all,
                        args=(error_weights,), x0=x0, method="Nelder-Mead",
                        options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 200, "maxiter": 400})

        return fmin, self.base_model.get_parameters()

    def fit_routine_const_ref_period(self, start_parameters):
        self.counter = 0
        # fit only v_offset, mem_tau, input_scaling, dend_tau

        x0 = np.array([start_parameters["mem_tau"], start_parameters["noise_strength"],
                       start_parameters["input_scaling"], self.tau_a, start_parameters["delta_a"],
                       start_parameters["dend_tau"], start_parameters["refractory_period"]])
        initial_simplex = create_init_simples(x0, search_scale=2)
        self.base_model.set_variable("refractory_period", start_parameters["refractory_period"])
        # error_list = [error_bf, error_vs, error_sc, error_cv,
        #                       error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_weights = (0, 1, 1, 1, 1, 1, 1, 1, 1)
        fmin = minimize(fun=self.cost_function_without_ref_period,
                        args=(error_weights,), x0=x0, method="Nelder-Mead",
                        options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 200, "maxiter": 400})

        return fmin, self.base_model.get_parameters()

    # similar results to fit routine 1
    def fit_routine_2(self, start_parameters):
        self.counter = 0

        x0 = np.array([start_parameters["mem_tau"], start_parameters["input_scaling"],   # mem_tau, input_scaling
                       start_parameters["delta_a"], start_parameters["dend_tau"]])  # delta_a, dend_tau
        initial_simplex = create_init_simples(x0, search_scale=2)

        error_weights = (0, 1, 1, 1, 1, 3, 2, 3, 2)
        fmin = minimize(fun=self.cost_function_only_adaption,
                        args=(error_weights,), x0=x0, method="Nelder-Mead",
                        options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 100, "maxiter": 400})
        best_pars = fmin.x
        x0 = np.array([best_pars[0], start_parameters["noise_strength"],
                       best_pars[1], self.tau_a, best_pars[2],
                       best_pars[3]])
        initial_simplex = create_init_simples(x0, search_scale=2)
        # error_list = [error_bf, error_vs, error_sc, error_cv,
        #                       error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_weights = (0, 2, 2, 2, 2, 1, 1, 1, 1)
        fmin = minimize(fun=self.cost_function_all,
                        args=(error_weights,), x0=x0, method="Nelder-Mead",
                        options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 100, "maxiter": 400})

        return fmin, self.base_model.get_parameters()

    def cost_function_all(self, X, error_weights=None):
        self.base_model.set_variable("mem_tau", X[0])
        self.base_model.set_variable("noise_strength", X[1])
        self.base_model.set_variable("input_scaling", X[2])
        self.base_model.set_variable("tau_a", X[3])
        self.base_model.set_variable("delta_a", X[4])
        self.base_model.set_variable("dend_tau", X[5])
        self.base_model.set_variable("refractory_period", X[6])

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = self.base_model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        self.base_model.set_variable("v_offset", v_offset)

        # [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def cost_function_without_ref_period(self, X, error_weights=None):
        self.base_model.set_variable("mem_tau", X[0])
        self.base_model.set_variable("noise_strength", X[1])
        self.base_model.set_variable("input_scaling", X[2])
        self.base_model.set_variable("tau_a", X[3])
        self.base_model.set_variable("delta_a", X[4])
        self.base_model.set_variable("dend_tau", X[5])

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = self.base_model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        self.base_model.set_variable("v_offset", v_offset)

        # [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def cost_function_all_without_noise(self, X, error_weights=None):
        self.base_model.set_variable("mem_tau", X[0])
        self.base_model.set_variable("input_scaling", X[1])
        self.base_model.set_variable("tau_a", X[2])
        self.base_model.set_variable("delta_a", X[3])
        self.base_model.set_variable("dend_tau", X[4])
        self.base_model.set_variable("noise_strength", 0)

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = self.base_model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        self.base_model.set_variable("v_offset", v_offset)

        # [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def cost_function_only_adaption(self, X, error_weights=None):
        self.base_model.set_variable("mem_tau", X[0])
        self.base_model.set_variable("input_scaling", X[1])
        self.base_model.set_variable("delta_a", X[2])
        self.base_model.set_variable("dend_tau", X[3])

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = self.base_model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        self.base_model.set_variable("v_offset", v_offset)
        # [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def cost_function_with_fixed_adaption_tau(self, X, tau_a, error_weights=None):
        # set model parameters:
        model = self.base_model
        model.set_variable("mem_tau", X[0])
        model.set_variable("noise_strength", X[1])
        model.set_variable("input_scaling", X[2])
        model.set_variable("delta_a", X[3])
        model.set_variable("dend_tau", X[4])
        model.set_variable("tau_a", tau_a)

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        model.set_variable("v_offset", v_offset)

        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def cost_function_with_fixed_adaption_with_dend_tau_no_noise(self, X, tau_a, delta_a, error_weights=None):
        # set model parameters:
        model = self.base_model
        model.set_variable("mem_tau", X[0])
        model.set_variable("input_scaling", X[1])
        model.set_variable("dend_tau", X[2])
        model.set_variable("tau_a", tau_a)
        model.set_variable("delta_a", delta_a)
        model.set_variable("noise_strength", 0)

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        model.set_variable("v_offset", v_offset)

        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def cost_function_with_fixed_adaption_with_dend_tau(self, X, tau_a, delta_a, error_weights=None):
        # set model parameters:
        model = self.base_model
        model.set_variable("mem_tau", X[0])
        model.set_variable("noise_strength", X[1])
        model.set_variable("input_scaling", X[2])
        model.set_variable("dend_tau", X[3])
        model.set_variable("tau_a", tau_a)
        model.set_variable("delta_a", delta_a)

        base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
        # find right v-offset
        test_model = model.get_model_copy()
        test_model.set_variable("noise_strength", 0)
        v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
        model.set_variable("v_offset", v_offset)

        error_list = self.calculate_errors(error_weights)

        return sum(error_list)

    def calculate_errors(self, error_weights=None, model=None):
        if model is None:
            model = self.base_model

        model_baseline = get_baseline_class(model, self.eod_freq)
        baseline_freq = model_baseline.get_baseline_frequency()
        vector_strength = model_baseline.get_vector_strength()
        serial_correlation = model_baseline.get_serial_correlation(self.sc_max_lag)
        coefficient_of_variation = model_baseline.get_coefficient_of_variation()
        burstiness = model_baseline.get_burstiness()


        fi_curve_model = get_fi_curve_class(model, self.fi_contrasts, self.eod_freq)
        f_zeros = fi_curve_model.get_f_zero_frequencies()
        f_infinities = fi_curve_model.get_f_inf_frequencies()
        f_infinities_slope = fi_curve_model.get_f_inf_slope()
        # f_zero_slopes = [fi_curve_model.get_f_zero_fit_slope_at_stimulus_value(x) for x in self.fi_contrasts]
        f_zero_slope_at_straight = fi_curve_model.get_f_zero_fit_slope_at_stimulus_value(self.f_zero_straight_contrast)

        # calculate errors with reference values
        error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq)
        error_vs = abs((vector_strength - self.vector_strength) / 0.1)
        error_cv = abs((coefficient_of_variation - self.coefficient_of_variation) / 0.1)
        error_bursty = (abs(burstiness - self.burstiness) / 0.02)

        error_sc = 0
        for i in range(self.sc_max_lag):
            error_sc += abs((serial_correlation[i] - self.serial_correlation[i]) / 0.1)
        # error_sc = error_sc / self.sc_max_lag



        error_f_inf_slope = abs((f_infinities_slope - self.f_inf_slope) / (self.f_inf_slope/20))
        error_f_inf = calculate_list_error(f_infinities, self.f_inf_values)

        # error_f_zero_slopes = calculate_list_error(f_zero_slopes, self.f_zero_slopes)
        error_f_zero_slope_at_straight = abs(self.f_zero_slope_at_straight - f_zero_slope_at_straight) \
                                            / (self.f_zero_slope_at_straight / 10)
        error_f_zero = calculate_list_error(f_zeros, self.f_zero_values)

        error_list = [error_bf, error_vs, error_sc, error_cv, error_bursty,
                      error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight]

        if error_weights is not None and len(error_weights) == len(error_list):
            for i in range(len(error_weights)):
                error_list[i] = error_list[i] * error_weights[i]
        elif error_weights is not None:
            warn("Error: weights had different length than errors and were ignored!")

        return error_list


def calculate_list_error(fit, reference):
    error = 0
    for i in range(len(reference)):
        error += abs_freq_error(fit[i] - reference[i])

    norm_error = error / len(reference)

    return norm_error


def abs_freq_error(diff, factor=10):
    return abs(diff) / factor


def create_init_simples(x0, search_scale=3.):
    dim = len(x0)
    simplex = [[x0[0]/search_scale], [x0[0]*search_scale]]
    for i in range(1, dim, 1):
        for vertex in simplex:
            vertex.append(x0[i]*search_scale)
        new_vertex = list(x0[:i])
        new_vertex.append(x0[i]/search_scale)
        simplex.append(new_vertex)

    return simplex


if __name__ == '__main__':
    print("use run_fitter.py to run the Fitter.")