
Comput Optim Appl (2012) 51:259–277
DOI 10.1007/s10589-010-9329-3

Implementing the Nelder-Mead simplex algorithm
with adaptive parameters

Fuchang Gao · Lixing Han

Received: 13 January 2010 / Published online: 4 May 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper, we first prove that the expansion and contraction steps of
the Nelder-Mead simplex algorithm possess a descent property when the objective
function is uniformly convex. This property provides some new insights on why the
standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then
propose an implementation of the Nelder-Mead method in which the expansion, con-
traction, and shrink parameters depend on the dimension of the optimization problem.
Our numerical experiments show that the new implementation outperforms the stan-
dard Nelder-Mead method for high dimensional problems.

Keywords Nelder-Mead method · Simplex · Polytope · Adaptive parameter ·
Optimization

1 Introduction

The Nelder-Mead simplex algorithm [14] is the most widely used direct search
method for solving the unconstrained optimization problem

minf (x), (1.1)

F. Gao was supported in part by NSF Grant DMS-0405855.
L. Han was supported in part by a Research and Creative Activities Grant from UM-Flint.

F. Gao
Department of Mathematics, University of Idaho, Moscow, ID 83844, USA
e-mail: fuchang@uidaho.edu

L. Han (�)
Department of Mathematics, University of Michigan-Flint, Flint, MI 48502, USA
e-mail: lxhan@umflint.edu

mailto:fuchang@uidaho.edu
mailto:lxhan@umflint.edu

260 F. Gao, L. Han

where f : R
n → R is called the objective function and n the dimension. A simplex

is a geometric figure in n dimensions that is the convex hull of n + 1 vertices. We
denote a simplex with vertices x1, x1, . . . ,xn+1 by �.

The Nelder-Mead method iteratively generates a sequence of simplices to approx-
imate an optimal point of (1.1). At each iteration, the vertices {xj }n+1

j=1 of the simplex
are ordered according to the objective function values

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1). (1.2)

We refer to x1 as the best vertex, and to xn+1 as the worst vertex. If several vertices
have the same objective values, consistent tie-breaking rules such as those given in
Lagarias et al. [10] are required for the method to be well-defined.

The algorithm uses four possible operations: reflection, expansion, contraction,
and shrink, each being associated with a scalar parameter: α (reflection), β (expan-
sion), γ (contraction), and δ (shrink). The values of these parameters satisfy α > 0,
β > 1, 0 < γ < 1, and 0 < δ < 1. In the standard implementation of the Nelder-Mead
method (see for example, [5, 7, 10, 11, 14, 18, 19]), the parameters are chosen to be

{α,β, γ, δ} = {1,2,1/2,1/2}. (1.3)

Let x̄ be the centroid of the n best vertices. Then

x̄ = 1

n

n∑

i=1

xi . (1.4)

We now outline the Nelder-Mead method, which is the version given in Lagarias
et al. [10].

One iteration of the Nelder-Mead algorithm

1. Sort. Evaluate f at the n+1 vertices of � and sort the vertices so that (1.2) holds.
2. Reflection. Compute the reflection point xr from

xr = x̄ + α(x̄ − xn+1).

Evaluate fr = f (xr). If f1 ≤ fr < fn, replace xn+1 with xr .
3. Expansion. If fr < f1 then compute the expansion point xe from

xe = x̄ + β(xr − x̄)

and evaluate fe = f (xe). If fe < fr , replace xn+1 with xe; otherwise replace xn+1
with xr .

4. Outside Contraction. If fn ≤ fr < fn+1, compute the outside contraction point

xoc = x̄ + γ (xr − x̄)

and evaluate foc = f (xoc). If foc ≤ fr , replace xn+1 with xoc; otherwise go to
step 6.

Implementing the Nelder-Mead simplex algorithm with adaptive 261

5. Inside Contraction. If fr ≥ fn+1, compute the inside contraction point xic from

xic = x̄ − γ (xr − x̄)

and evaluate fic = f (xic). If fic < fn+1, replace xn+1 with xic; otherwise, go to
step 6.

6. Shrink. For 2 ≤ i ≤ n + 1, define

xi = x1 + δ(xi − x1).

The Nelder-Mead method may fail to converge to a critical point of f . In [12],
Mckinnon constructs three problems in dimension two, where the objective functions
are strictly convex and the Nelder-Mead method can converge to a non-critical point
of f . One of these objective functions has continuous second derivatives. Aimed at
having better convergence, several variants of the simplex method have been pro-
posed (see for example, [2, 4, 8, 15–17]).

Although lacking a satisfactory convergence theory, the Nelder-Mead method gen-
erally performs well for solving small dimensional real life problems and contin-
uously remains as one of the most popular direct search methods [9, 10, 19, 20].
It has been observed by many researchers, however, that the Nelder-Mead method
can become very inefficient for large dimensional problems (see, for example,
[2, 16, 19]). This is the so-called effect of dimensionality [19]. Through numerical ex-
periments, Torczon [16] suggests that this may be due to the search direction becomes
increasingly orthogonal to the steepest descent direction. In [6], Han and Neumann
study this problem by considering to apply the standard Nelder-Mead method to the
quadratic function f (x) = xT x and use the minimizer as one of the initial vertices.
They show that the oriented lengths of simplices converge to zero with an asymptotic
linear rate and the rate constant rapidly grows to 1 as the dimension increases. It is
not known if this type of analysis can be extended to a general initial simplex. The
effect of dimensionality deserves further investigation [20].

In this paper, we first prove that the expansion and contraction steps of the Nelder-
Mead simplex algorithm possess a descent property when the objective function
is uniformly convex. This property offers some new insights on why the standard
Nelder-Mead algorithm becomes inefficient in high dimensions, complementing the
existing explanations given in Torczon [16] and in Han and Neumann [6]. We then
propose an implementation of the Nelder-Mead method in which the expansion, con-
traction, and shrink parameters depend on the dimension of the optimization problem.
We also provide some numerical results which show that the new implementation
outperforms the standard Nelder-Mead method for high dimensional problems.

2 A sufficient descent property of the expansion and contraction steps

Following [21], a function on R
n is called uniformly convex if there exists a strictly

increasing function ρ : [0,∞) → [0,∞) such that ρ(0) = 0, and for any x, y ∈ R
n

and any 0 < t < 1,

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) − t (1 − t)ρ(‖x − y‖), (2.1)

262 F. Gao, L. Han

where ‖x − y‖ denotes the Euclidean distance between x and y in R
n. We remark

that in [1], uniformly convex functions are defined using a special choice of ρ:
ρ(t) = c

2 t2 for some constant c > 0. It is proved in [1] that if f is a twice contin-
uously differentiable function, then f is uniformly convex (in the sense of [1]) if and
only if its Hessian matrix is uniformly positive definite.

Theorem 2.1 Suppose n ≥ 2. Assume that f is uniformly convex and the Nelder-
Mead method uses the standard parameters (1.3). Let � be a simplex in R

n with
vertices {x1,x2, . . . ,xn+1} and D(�) its diameter. Define the functional

F(�) = f (x1) + f (x2) + · · · + f (xn+1).

If T is an expansion, inside contraction, or outside contraction in the Nelder-Mead
method, then

F(T �) − F(�) ≤ − (n − 1)

2n2
ρ

(
1

2
D(�)

)
. (2.2)

Proof Let x̄ be the centroid of the n best vertices as defined in (1.4). We denote the
face of the simplex with the vertices x1,x2, . . . ,xn by Fn. By the uniform convexity
of f , for any 1 ≤ i ≤ n, we have

f (x̄) = f

(
1

n
xi + n − 1

n
· x1 + · · · + xi−1 + xi+1 + · · · + xn

n − 1

)

≤ 1

n
f (xi) + n − 1

n
f

(
x1 + · · · + xi−1 + xi+1 + · · · + xn

n − 1

)

− n − 1

n2
ρ

(∥∥∥∥xi − x1 + · · · + xi−1 + xi+1 + · · · + xn

n − 1

∥∥∥∥

)

≤ f (x1) + f (x2) + · · · + f (xn)

n

− n − 1

n2
ρ

(∥∥∥∥xi − x1 + · · · + xi−1 + xi+1 + · · · + xn

n − 1

∥∥∥∥

)

= f (x1) + f (x2) + · · · + f (xn)

n
− (n − 1)

n2
ρ

(
n

n − 1
‖xi − x̄‖

)

≤ f (xn+1) − (n − 1)

n2
ρ (‖xi − x̄‖) .

Because the inequality above holds for all 1 ≤ i ≤ n, we have

f (x̄) ≤ f (xn+1) − (n − 1)

n2
ρ

(
max

1≤i≤n
‖xi − x̄‖

)
. (2.3)

Implementing the Nelder-Mead simplex algorithm with adaptive 263

If T is an expansion of xn+1 through the face Fn, then T � is the simplex with
vertices x1,x2, . . . ,xn and xe = 3x̄ − 2xn+1. Since xr = 2x̄ − xn+1 and expansion is
used, we have f (xe) < f (xr) < f (x̄). Therefore we have

f (x̄) = f

(
1

2
xn+1 + 1

2
xr

)

≤ 1

2
f (xn+1) + 1

2
f (xr) − 1

4
ρ(‖xn+1 − xr‖)

≤ 1

2
f (xn+1) + 1

2
f (x̄) − 1

4
ρ(2‖xn+1 − x̄‖). (2.4)

Applying (2.3) to the right-hand side of (2.4), we obtain

f (x̄) ≤ f (xn+1) − (n − 1)

2n2
ρ

(
max

1≤i≤n
‖xi − x̄‖

)
− 1

4
ρ(2‖xn+1 − x̄‖)

≤ f (xn+1) − (n − 1)

2n2

[
ρ

(
max

1≤i≤n
‖xi − x̄‖

)
+ ρ(‖xn+1 − x̄‖)

]
.

Because

max

{
max

1≤i≤n
‖xi − x̄‖,‖xn+1 − x̄‖

}
≥ 1

2
D(�), (2.5)

where D(�) is the diameter of �, we obtain

f (x̄) ≤ f (xn+1) − (n − 1)

2n2
ρ

(
1

2
D(�)

)
,

which implies

F(T �) − F(�) = f (xe) − f (xn+1) ≤ f (x̄) − f (xn+1)

≤ − (n − 1)

2n2
ρ

(
1

2
D(�)

)
.

Similarly, if T is an inside contraction, then

F(T �) − F(�) = f

(
1

2
xn+1 + 1

2
x̄
)

− f (xn+1)

≤ 1

2
f (xn+1) + 1

2
f (x̄) − 1

4
ρ(‖xn+1 − x̄‖) − f (xn+1)

≤ − (n − 1)

2n2
ρ

(
max

1≤i≤n
‖xi − x̄‖

)
− 1

4
ρ(‖xn+1 − x̄‖)

≤ − (n − 1)

2n2
ρ

(
1

2
D(�)

)
, (2.6)

where in the last two inequalities we used (2.3) and (2.5).

264 F. Gao, L. Han

Finally, if T is an outside contraction, then

F(T �) − F(�) = f

(
1

2
xr + 1

2
x̄
)

− f (xn+1)

≤ 1

2
f (xr) + 1

2
f (x̄) − 1

4
ρ(‖xr − x̄‖) − f (xn+1)

≤ 1

2
f (xn+1) + 1

2
f (x̄) − 1

4
ρ(‖xn+1 − x̄‖) − f (xn+1)

≤ − (n − 1)

2n2
ρ

(
1

2
D(�)

)
,

where the last inequality follows from (2.6). �

Corollary 2.2 Suppose that n ≥ 2. If the objective function f is uniformly convex
and the standard Nelder-Mead method uses infinitely many expansion or contraction
steps, then the diameter of the simplices converges to 0.

Proof Let {�m} be the sequence of simplices generated by the Nelder-Mead algo-
rithm. We consider the decreasing sequence F(�m). By the assumption, we can find
an infinite subset {mk} such that the operator from �mk

to �mk+1 is not a reflection.
If the diameter of �n does not converge to 0, then there is ε1 > 0 and an infinite sub-
set K ⊂ {mk}∞k=1, such that for each k ∈ K , D(�k) > ε1 and the operator from �k to
�k+1 is neither a reflection, nor a shrink. By Theorem 2.1, for such a k, we have

F(�k) − F(�k+1) ≥ (n − 1)

2n2
ρ

(
1

2
ε1

)
.

This implies that

F(�1) − fmin ≥
∞∑

k=1

[F(�k) − F(�k+1)]

≥
∑

k∈K

[F(�k) − F(�k+1)]

≥
∑

k∈K

(n − 1)

2n2
ρ

(
1

2
ε1

)

= ∞.

This is impossible. Therefore, the diameter of �m converges to 0. �

In [10], Lagarias et al. prove that if f is strictly convex and n = 2, the diameter
of simplices generated by the standard Nelder-Mead method converges to 0. It is
certainly desirable to extend this result to n ≥ 3, even under the assumption that f is
uniformly convex. From Corollary 2.2, we only need to show that starting from any
nondegenerate simplex, the Nelder-Mead method cannot always use the reflection

Implementing the Nelder-Mead simplex algorithm with adaptive 265

steps. This is true when n = 2. However, the situation becomes rather complicated
for n ≥ 3. We will illustrate this in the following example.

Example 2.3 Let n = 3. We shall show that for any integer m ≥ 2, even if we start
with a regular simplex, there always exists a uniformly convex function such that the
first m iterations of the Nelder-Mead algorithm are all reflections.

To construct such a function, we let θ = cos−1(1/3). Because θ/π is irrational,

the points ±(
√

3
2 coskθ,

√
3

2 sin kθ), 0 ≤ k ≤ m, are distinct points on the circle with

center (0,0) and radius
√

3
2 . Let δ be the minimal arc length between these points,

and denote

rk = 1 + k

m
[sec δ − 1].

Then the points ±(
√

3
2 rk coskθ,

√
3

2 rk sinkθ), 0 ≤ k ≤ m, are the vertices of a sym-
metric convex polygon. To see this, we relabel these points and use polar coordi-
nates to express them as Qj = (ρj , θj), 1 ≤ j ≤ 2m + 2, where 0 ≤ θ1 < θ2 < · · · <
θ2m+2 < 2π , and ρj > 0. Because the set {Q1,Q2, . . . ,Q2m+2} is symmetric about
the origin O , the polygon Q1Q2 · · ·Q2m+2Q1 is symmetric about the origin O . To
show it is convex, we prove that for any adjacent points Qi and Qj on the polygon,
∠OQiQj and ∠OQjQi are both acute. Indeed, because ∠QiOQj ≥ 2δ/

√
3 > δ,

while |OQi |/|OQj | ≤ rm/r0 = sec δ and |OQj |/|OQi | ≤ rm/r0 = sec δ, ∠OQiQj

and ∠OQjQi are both acute angles.
Now, we choose R ≥ 2rm. At each vertex Qi , 1 ≤ i ≤ 2m + 2, we can find a

closed disk Di of radius R such that Di contains the polygon, and Qi ∈ ∂Di , where

∂K denotes the boundary of region K . Let S = ⋂2m+2
i=1 Di , and D = S ∩ (−S). Being

an intersection of closed disks, D is convex. Furthermore ∂D contains all the vertices
Q1, . . . ,Q2m+2.

Now, define the function f : R
2 → R as the square of the norm introduced by D,

that is, f (x, y) = r2 where r = min{s : (x, y) ∈ sD}. For this function f , we have
that: (i) It is uniformly convex; (ii) on ∂D, f (x, y) = 1; (iii) f (0,0) = 0; and (iv)

because (
√

3
2 coskθ,

√
3

2 sin kθ) ∈ ∂r−1
k D, we have f (

√
3

2 coskθ,
√

3
2 sin kθ) = r−2

k ,
which decreases as k increases. In particular, we have

cos2 δ = r−2
m ≤ f

(√
3

2
coskθ,

√
3

2
sin kθ

)
≤ r−2

1 < 1

for k = 1,2, . . . ,m. Note that when m ≥ 2, δ is at most
√

3π/6. Thus, we

have cos2 δ ≥ 0.37 > 1/4, and hence 1/4 < f (
√

3
2 coskθ,

√
3

2 sin kθ) < 1 for k =
1,2, . . . ,m.

Now, we define function g(x, y, z) = f (x, y) + 1
2z2. If we choose the initial sim-

plex �0 as the regular simplex with vertices x1 = (0,0,1/2), x2 = (0,0,−1/2),

x3 = (
√

3/6,
√

2/
√

3,0) = (
√

3
2 cos θ,

√
3

2 sin θ,0), and x4 = (
√

3/2,0,0), then,
we have g(x1) = g(x2) = 1/8, 1/4 < g(x3) < 1 and g(x4) = 1. It is easy to
check that when applying Nelder-Mead algorithm to g with initial simplex �0,
the first m iterations are all reflections. Indeed, the k-th simplex has vertices

266 F. Gao, L. Han

x(k)
1 = (0,0,1/2), x(k)

2 = (0,0,−1/2), x(k)
3 = (

√
3

2 coskθ,
√

3
2 sinkθ,0), and x(k)

4 =
(
√

3
2 cos(k − 1)θ,

√
3

2 sin(k − 1)θ,0).

Despite the above example, we conjecture that for a continuous convex objective
function, if the level set {x ∈ R

n : f (x) ≤ f (xw)} is bounded, where xw is the worst
vertex of the initial simplex, then the number of consecutive reflections is always
finite. In what follows we show that it is true if the reflections follow a repeated
pattern—a concept that will become clear as we proceed. In fact, we only need the
continuity and the bounded level set of the objective function, not the convexity in
this case.

In R
n, let x(0)

p = (x
(0)
p1 , x

(0)
p2 , . . . , x

(0)
pn), 1 ≤ p ≤ n + 1 be the vertices of an n-

dimensional simplex. For notational convenience, we do not sort them based on their
corresponding function values here. If x(0)

k is the moving vertex due to a reflection

step, then the new simplex has vertices x(1)
p = (x

(1)
p1 , x

(1)
p2 , . . . , x

(1)
pn) determined by the

equation

(x
(1)
pj)1≤p≤n+1,1≤j≤n = Mk(x

(0)
pj)1≤p≤n+1,1≤j≤n

for some k (1 ≤ k ≤ n + 1), where the matrix Mk = (mpq)1≤p,q≤n+1 satisfies mkk =
−1, mpp = 1 for p �= k; mkq = 2/n for q �= k, and mpq = 0 for all other cases. With
this notion, the vertices after b reflections can be expressed as

(x(b)
pq)1≤p≤n+1,1≤q≤n = Mkb

Mkb−1 · · ·Mk1(x
(0)
pq)1≤p≤n+1,1≤q≤n.

Note that the new vertices are all distinct. If we assume that after the first b (where
b ≥ 0 is a finite integer) steps, the Mkj

’s appear in the product in a repeated pattern
(say repeating in every s steps) as

(Mks Mks−1 · · ·Mk1)(Mks Mks−1 · · ·Mk1) · · · (Mks Mks−1 · · ·Mk1)

then for l = 1,2, . . . , we can write

(x(ls+b)
pq)1≤p≤n+1,1≤q≤n = T l(x(b)

pq)1≤p≤n+1,1≤q≤n,

where T = Mks Mks−1 · · ·Mk1 . Then the Ergodic Theory of linear operators leads to

Claim 2.4 If f is continuous and its level set {x ∈ R
n : f (x) ≤ f (xw)} is bounded,

then the moving vertex in step b is a limit point of the new vertices that appear later.

However, this is impossible for a continuous objective function because the func-
tion values at later vertices are strictly decreasing. Therefore, the number of consec-
utive reflections is always finite in this case.

For the convenience of the readers, we now give a self-contained proof of the
claim.

Proof of the Claim We denote by Yl the (n + 1) × n matrix (x
(ls+b)
pq)1≤p≤n+1,1≤q≤n.

With this notation, we can write Yl = T lY0. Let λ1, λ2, . . . , λn+1 be the eigenvalues
of T . By Jordan decomposition, we can write T = P −1JP where P is invertible and

Implementing the Nelder-Mead simplex algorithm with adaptive 267

J is the Jordan matrix with λ1, . . . , λn+1 on its diagonal. Note that T l = P −1J lP .
We will prove that J is diagonal and |λ1| = |λ2| = · · · = |λn+1| = 1.

Let Zl = PYl for each l. Then {Zl}∞l=1 is bounded due to the boundedness of the
level set of f . Moreover, we have Zl = J lZ0. If |λk| > 1 for some k, because Zl is
bounded, the k-th row of Z0 must be zero. Also, because Zl+j = J lZj , so the k-th
row of Zj must be zero for all j = 1,2, On the other hand, because |det(T)| =
1, the assumption |λk| > 1 implies |λj | < 1 for some j �= k. This implies that the
j -th row of Zl goes to zero as l goes to infinity. Now we end up with the following
situation for matrix Zl : the k-th row is identically zero and the j -th row goes to zero
as l → ∞. In particular, this implies that the row vectors of P −1Zl asymptotically
lie on an n − 1 dimensional hyperplane in R

n. Recall that Yl = P −1Zl consist of
vertices from a non-degenerated n-dimensional simplex whose volume is a constant.
This is impossible. Thus |λk| ≤ 1 for all k. Together with the fact that |det(T)| = 1,
we conclude that |λ1| = |λ2| = · · · = |λn+1| = 1.

Next, we show that J is diagonal. Suppose J is not diagonal. Let k be the largest
integer such that Jk−1,k = 1, then the boundedness of the (k − 1)-th row of Zl would
implies the k-th row of Z0 is identically zero, which further implies that the k-th row
of Z1 is identical zero. Similarly, by analyzing the identity Zl+1 = J lZ1, we see the
(k − 1)-th row of Z1 is identical zero. Thus, the matrix Z1 has two rows that are
identical zero. But this is impossible because Zl has rank n.

Now that J is diagonal and |J11| = |J22| = · · · = |Jn+1,n+1| = 1, we can write
J l = diag(elα1i , elα2i , . . . , elαn+1i), where i = √−1. Because T l �= I for any integer
l > 0, at least one of the αk is an irrational multiple of π . If αj is a rational multiple
of π , then we can find an integer r such that erαj i = 1; if αj is an irrational multiple
of π , then {elαj i}∞l=1 is dense on the unit circle. Therefore, it is not difficult to see that
we can find a subsequence J lj , j = 1,2, . . . , that converges to I . Note that

(x(b)
pq)1≤p≤n+1,1≤q≤n = P −1J−lj P (x

(lj s+b)
pq)1≤p≤n+1,1≤q≤n.

In particular, this implies that the moving vertex at step b is a limit point of the
vertices appearing in the steps b + lj s. The proof is complete. �

3 Why the Nelder-Mead method becomes inefficient in high dimensions:
some new insights

Theorem 2.1 shows that for a uniformly convex objective function, the expansion and
contraction steps of the Nelder-Mead simplex algorithm possess a sufficient descent
property if the diameter of the simplex is not too small. We will use this property
to give some new explanations about the effect of dimensionality on the standard
Nelder-Mead algorithm, which complement the existing ones given in Torczon [16]
and in Han and Neumann [6]. We assume that f is uniformly convex.

According to Theorem 2.1, the reduction in the functional F(�) caused by an
expansion or contraction step depends on the factor n−1

2n2 . It decreases for n ≥ 2 and
converges to 0 as n → ∞. This indicates that the efficiency of the expansion and
contraction steps diminishes as the dimension n increases.

268 F. Gao, L. Han

We also see that the larger the diameter of the simplex � is, the more reduction
in the functional F(�) an expansion or contraction step can make. This observation
can explain why the strategy of restarting with a larger simplex can help improve
the performance of the Nelder-Mead method in high dimensions. It also suggests
that starting with a large initial simplex may be beneficial if x0 is far away from a
minimizer.

For uniformly convex objective functions, the Nelder-Mead method never uses the
shrink step (see for example, [10]). Therefore, Theorem 2.1 indicates that the inef-
ficiency of the standard Nelder-Mead method in high dimensions is likely due to a
large number of reflections being used. This is confirmed by our numerical experi-
ment, in which, we used the Matlab implementation of the Nelder-Mead method [11]:
FMINSEARCH.
FMINSEARCH uses the standard choice of the parameters (1.3). It forms the initial

simplex by choosing a starting point x0 as one of the initial simplex vertices. The
remaining n vertices are then generated by setting as x0 + τiei , where ei is the unit
vector in the ith coordinate, and τi is chosen as

τi =
{

0.05 if (x0)i �= 0,

0.00025 if (x0)i = 0.
(3.1)

For given TolFun, TolX, MaxIter, and MaxFunEvals values, FMIN-
SEARCH terminates when one of the following three criteria is met:

(T1) max2≤i≤n+1 |fi − f1| ≤ TolFun and max2≤i≤n+1 ‖xi − x1‖∞ ≤ TolX.
(T2) Number of iterations exceeding MaxIter.
(T3) Number of function evaluations exceeding MaxFunEvals.

In our experiment, we used the following values for termination:

TolFun= 10−8, TolX= 10−8, MaxIter= 106,

MaxFunEvals= 106.
(3.2)

We ran FMINSEARCH on the Quadratic function f (x) = xT x with varying dimen-
sions n = 2,4, . . . ,100, using the initial point x0 = [1,1, . . . ,1]T ∈ Rn. We plotted
the fractions of the reflection steps of the Nelder-Mead method on the Quadratic prob-
lem as a function of dimension n in Fig. 1. From this figure we can clearly see that the
standard Nelder-Mead method uses an overwhelmingly large number of reflections
in high dimensions.

One might think that the number of reflections increases because the simplices are
close to be degenerate. This is not always the case, as illustrated in Example 2.3, in
which the starting simplex is regular. We notice that in the example, the vertices x1
and x2 are not moving. In R

3, we can produce similar examples so that x1 is the only
vertex that is not moving in the consecutive reflections. This fact further suggests that
when the dimension n gets higher, there are an increasing number of ways to cause
consecutive reflections.

So far in this section we have focused on uniformly convex objective functions.
We believe that the explanations also shed some light on the behavior of the Nelder-
Mead method for general objective functions.

Implementing the Nelder-Mead simplex algorithm with adaptive 269

Fig. 1 Fraction of steps which
are reflections of standard
Nelder Mead plotted against
problem dimension for the
quadratic xT x

4 Implementation using adaptive parameters

4.1 New implementation

From the results in the previous two sections, reducing the chances of using reflection
steps and avoiding the rapid reduction in the simplex diameter should help improve
the performance of the Nelder-Mead simplex method for large dimensional problems.
Based on these observations, we propose to choose the expansion, contraction, and
shrinkage parameters adaptively according to the problem dimension n. In particular,
we choose for n ≥ 2,

α = 1, β = 1 + 2

n
, γ = 0.75 − 1

2n
, δ = 1 − 1

n
. (4.1)

We shall call the Nelder-Mead method with this choice of parameters the Adaptive
Nelder-Mead Simplex (ANMS) method and the Nelder-Mead method with the stan-
dard choice of parameters the Standard Nelder-Mead Simplex (SNMS) method. Note
that when n = 2, ANMS is identical to SNMS.

Choosing β = 1+2/n can help prevent the simplex from bad distortion caused by
expansion steps in high dimensions. Using γ = 0.75 − 1

2n
instead of 0.5 can alleviate

the reduction of the simplex diameter when n is large. The purpose for using δ =
1 − 1/n instead of 1/2 is to prevent the simplex diameter from sharp reduction when
n is large. This can make the subsequent expansion or contraction steps reduce the
objective function more according to Theorem 2.1.

Through numerical experiments, we have observed that using parameters (4.1)
instead of (1.3) in the Nelder-Mead algorithm can help reduce the use of reflec-
tion steps for uniformly convex functions. We illustrate this in Fig. 2, which shows
the fractions of the reflection steps of the ANMS method on the Quadratic prob-
lem f (x) = xT x with varying dimensions n = 2,4, . . . ,100, using the initial point
x0 = [1,1, . . . ,1]T ∈ Rn. Comparing it with Fig. 1, we can see the ANMS method
significantly reduces the use of reflection steps for this problem. Therefore, the
ANMS method is expected to perform well on this problem. The numerical results in
the next section confirms this.

270 F. Gao, L. Han

Fig. 2 Fraction of steps which
are reflections of adaptive
Nelder-Mead plotted against
problem dimension for the
quadratic xT x. Note that the
fraction of reflections is at most
0.45 for all dimensions

4.2 Numerical results

In this subsection we report some numerical experiments on the ANMS method. The
experiments were done on a Dell XPS 1330 laptop computer with a Windows Vista
operating system. We used FMINSEARCHwith the adaptive parameter values (4.1) to
carry out our tests. The initial simplex was the default construction in FMINSEARCH
(see (3.1)). The following values were used in the termination criteria:

TolFun= 10−4, TolX= 10−4, MaxIter= 106,

MaxFunEvals= 106.
(4.2)

To assess the performance of the ANMS method on uniformly convex functions,
we tested the ANMS method against the SNMS method on the following uniformly
convex function, which is a modified version of the quartic function in [3]:

min
x∈Rn

f (x) = xT Dx + σ(xT Bx)2, (4.3)

where D is a positive definite matrix of the form

D = diag([1 + ε, (1 + ε)2, . . . , (1 + ε)n])
and B the positive definite matrix

B = UT U, U =
⎡

⎢⎣

1 . . . 1
. . .

...

1

⎤

⎥⎦ ,

where ε ≥ 0 is a parameter that controls the condition number of D and σ ≥ 0 is a
parameter that controls the deviation from quadratic. The unique minimizer of prob-
lem (4.3) is x∗ = [0,0, . . . ,0]T with minimal value f (x∗) = 0. Note that if σ = 0,
then the objective function f is a quadratic function. In particular, if ε = σ = 0,
then f is the quadratic function xT x. In our tests, we used the parameters val-
ues (ε, σ) = (0,0), (0.05,0), (0,0.0001) and (0.05,0.0001). The starting point was
[1,1, . . . ,1]T . We summarize the numerical results in Table 1, in which Dim denotes
the problem dimension; Final f and nfeval denote the final function value and

Implementing the Nelder-Mead simplex algorithm with adaptive 271

Table 1 Comparison of ANMS and SNMS on problem (4.3)

(ε, σ) Dim SNMS ANMS

nfeval Final f nfeval Final f

(0,0) 10 1228 1.4968 × 10−8 898 5.9143 × 10−9

(0,0) 20 12614 1.0429 × 10−7 2259 1.1343 × 10−8

(0,0) 30 38161 7.9366 × 10−7 4072 1.5503 × 10−8

(0,0) 40 75569 2.4515 × 10−4 7122 1.7631 × 10−8

(0,0) 50 106197 6.2658 × 10−4 9488 2.0894 × 10−8

(0,0) 60 114377 6.1295 × 10−5 13754 3.5012 × 10−8

(0.05,0) 10 1123 1.1166 × 10−7 910 9.0552 × 10−9

(0.05,0) 20 9454 2.7389 × 10−7 2548 1.8433 × 10−8

(0.05,0) 30 55603 5.3107 × 10−3 5067 2.6663 × 10−8

(0.05,0) 40 99454 1.5977 × 10−2 8598 3.6816 × 10−8

(0.05,0) 50 215391 1.6906 × 10−1 13167 6.7157 × 10−8

(0.05,0) 60 547475 1.2685 × 10+1 20860 6.8945 × 10−8

(0,0.0001) 10 1587 2.0101 × 10−8 1088 1.4603 × 10−8

(0,0.0001) 20 24313 2.2788 × 100 4134 2.8482 × 10−8

(0,0.0001) 30 43575 4.5166 × 10+2 13148 4.0639 × 10−8

(0,0.0001) 40 60153 3.9387 × 10+2 21195 9.3001 × 10−8

(0,0.0001) 50 117827 8.1115 × 10+2 42403 8.1755 × 10−8

(0,0.0001) 60 195333 5.4100 × 10+3 59626 1.0557 × 10−6

(0.05,0.0001) 10 1787 3.1878 × 10−8 994 6.0454 × 10−9

(0.05,0.0001) 20 20824 1.2984 × 10+1 3788 1.5294 × 10−8

(0.05,0.0001) 30 39557 1.8108 × 10+2 10251 4.0331 × 10−8

(0.05,0.0001) 40 71602 4.3797 × 10+2 18898 5.7407 × 10−8

(0.05,0.0001) 50 87660 8.0726 × 10+2 37282 4.7431 × 10−7

(0.05,0.0001) 60 136991 1.5369 × 10+3 61259 2.0786 × 10−7

the number of function evaluations respectively when the algorithm terminates. We
observe from this table that the ANMS method is always able to find a good approxi-
mation of the solution for this set of problems. On the other hand, the SNMS method
terminates prematurely on the two problems when σ = 0.0001 for n ≥ 20 after a
large number of function evaluations being used. It also fails to find a good approx-
imate solution for the problem with (ε, σ) = (0.05,0) when n is large, after many
function evaluations. Overall, the ANMS method substantially outperforms SNMS
on the uniformly convex problem (4.3) with these (ε, σ) values.

To assess the performance of the ANMS method on general functions, we tested
the ANMS method against the SNMS method on the standard test problems from
Moré, Garbow, and Hilstrom [13]. First, we did experiments on the 18 Moré-Garbow-
Hilstrom unconstrained optimization problems with small dimensions (2 ≤ n ≤ 6),
using the standard starting points given in [13]. The numerical results are summa-
rized in Table 2. From this table we see that the performance of the ANMS method
is comparable to that of the SNMS method in many cases on this set of small di-
mensional problems. We note that there are a few cases where ANMS seems to need

272 F. Gao, L. Han

Table 2 Comparison of ANMS and SNMS on Moré-Garbow-Hilstrom test problems 2 ≤ n ≤ 6

Problem Dim SNMS ANMS

nfeval Final f nfeval Final f

Helical valley 3 142 3.5759 × 10−4 224 2.6665 × 10−4

Biggs EXP6 6 916 5.6556 × 10−3 3923 5.5203 × 10−13

Gaussian 3 62 1.1889 × 10−8 70 1.2330 × 10−8

Powell badly scaled 2 700 1.4223 × 10−17 700 1.4223 × 10−17

Box 3D 3 480 7.5589 × 10−2 424 7.5589 × 10−2

Variably dimensional 4 519 1.1926 × 10−8 542 5.0684 × 10−9

Variably dimensional 6 1440 5.3381 × 10−9 1170 5.9536 × 10−9

Watson 4 579 5.3381 × 10−2 730 6.9588 × 10−2

Watson 6 903 8.3670 × 10−2 1846 2.2877 × 10−3

Penalty I 4 583 2.3546 × 10−5 1436 2.2500 × 10−5

Penalty I 6 3792 3.8005 × 10−5 3252 3.8005 × 10−5

Penalty II 4 2726 9.3805 × 10−6 197 9.4755 × 10−6

Brown badly scaled 2 275 2.0036 × 10−9 275 2.0036 × 10−9

Brown & Dennis 4 333 8.5822 × 10+4 405 8.5822 × 10+4

Gulf 3 641 9.9281 × 10−7 2718 9.8888 × 10−19

Trigonometric 4 203 3.0282 × 10−4 197 3.0282 × 10−4

Trigonometric 6 448 2.7415 × 10−4 437 1.8442 × 10−9

Extended Rosenbrock 2 159 8.1777 × 10−10 159 8.1777 × 10−10

Extended Rosenbrock 4 1345 2.2923 × 10−10 568 7.3907 × 10−10

Powell singular 4 305 1.3906 × 10−6 353 1.7814 × 10−7

Beale 2 107 1.3926 × 10−10 107 1.3926 × 10−10

Wood 4 527 1.9448 × 10−9 711 9.1293 × 10−9

Chebyquad 2 57 1.4277 × 10−8 57 1.4277 × 10−8

Chebyquad 6 630 1.5008 × 10−7 414 1.9106 × 10−7

significantly more function evaluations than SNMS. When we examined them more
carefully, we found that: (1) For the Biggs EXP6 function, the two algorithms termi-
nated at different minimizers. (2) For the Watson function (n = 6) and Gulf function,
the ANMS found a much better approximation than the SNMS method.

We then tested the ANMS method against the SNMS method on the following
unconstrained optimization problems of varying dimensions from the Moré-Garbow-
Hilstrom collection [13]:

1. band: Broyden banded function;
2. bv: Discrete boundary value function;
3. ie: Discrete integral equation function;
4. lin: Linear function—full rank;
5. pen1: Penalty I function;
6. pen2: Penalty II function;
7. rosenbrock: Extended Rosenbrock function;
8. singular: Extended Powell singular function;

Implementing the Nelder-Mead simplex algorithm with adaptive 273

Table 3 Comparison of ANMS and SNMS on large dimensional problems

Prob Dim SNMS ANMS

nfeval Final f nfeval Final f

band 10 1069 2.0581 × 10−6 741 2.2149 × 10−7

band 20 5213 8.3121 × 10−5 1993 5.1925 × 10−7

band 30 29083 12.1584 3686 6.4423 × 10−7

band 40 20824 2.4717 × 10−4 6060 1.0892 × 10−6

band 50 37802 2.6974 × 10−4 8357 1.2359 × 10−6

band 60 38755 2.3999 × 10−4 10630 1.0002 × 10−6

bv 10 863 9.5451 × 10−9 1029 1.0388 × 10−9

bv 20 5553 7.8216 × 10−6 7535 3.1789 × 10−10

bv 30 23150 1.0294 × 10−5 3860 3.0035 × 10−5

bv 40 862 1.6788 × 10−5 1912 1.6110 × 10−5

bv 50 1087 8.9953 × 10−6 1905 8.8601 × 10−6

bv 60 1507 5.3411 × 10−6 2125 5.3085 × 10−6

ie 10 1123 5.0253 × 10−9 774 9.5926 × 10−9

ie 20 6899 1.2029 × 10−5 3320 1.0826 × 10−8

ie 30 43231 0.0015 8711 2.1107 × 10−8

ie 40 61575 3.7466 × 10−4 18208 4.0741 × 10−8

ie 50 155635 0.0031 25961 4.7628 × 10−8

ie 60 148851 5.1304 × 10−4 38908 2.2644 × 10−7

lin 10 1974 1.7816 × 10−8 1020 5.5242 × 10−9

lin 20 15401 0.0104 3009 1.1136 × 10−8

lin 30 57260 0.4494 5310 2.1895 × 10−8

lin 40 83928 0.5527 8025 1.8607 × 10−8

lin 50 183633 0.0493 11618 1.9984 × 10−8

lin 60 475121 0.0280 16492 2.7243 × 10−8

pen1 10 3909 7.5725 × 10−5 5410 7.0877 × 10−5

pen1 20 21680 8.6799 × 10+3 14995 1.5778 × 10−4

pen1 30 64970 5.1216 × 10+5 45852 2.4773 × 10−4

pen1 40 254995 2.8566 × 10+5 86293 3.3925 × 10−4

pen1 50 287599 4.4971 × 10+6 198719 4.3179 × 10−4

pen1 60 654330 2.6319 × 10+6 254263 5.2504 × 10−4

pen2 10 4017 2.9787 × 10−4 9741 2.9366 × 10−4

pen2 20 27241 0.0065 11840 6.3897 × 10−3

pen2 30 37774 0.0668 16882 0.0668

pen2 40 116916 29.6170 27211 0.5569

pen2 50 204871 4.2997 43444 4.2961

pen2 60 680176 48.1215 55346 32.2627

9. trid: Broyden tridiagonal function;
10. trig: Trigonometric function;
11. vardim: Variably dimensioned function

using the same starting points as in [13].

274 F. Gao, L. Han

Table 4 Comparison of ANMS and SNMS on large dimensional problems

Prob Dim SNMS ANMS

nfeval Final f nfeval Final f

rosenbrock 6 2141 2.1314 1833 1.3705 × 10−9

rosenbrock 12 6125 14.316 10015 3.3974 × 10−9

rosenbrock 18 13357 22.000 29854 4.2290 × 10−9

rosenbrock 24 17156 29.119 50338 4.2591 × 10−9

rosenbrock 30 19678 50.889 156302 5.4425 × 10−9

rosenbrock 36 43870 52.201 119135 1.6616 × 10−8

singular 12 2791 9.5230 × 10−6 5199 3.9417 × 10−8

singular 24 15187 3.8012 × 10−4 11156 4.8767 × 10−6

singular 32 37754 8.4318 × 10−5 37925 4.6217 × 10−6

singular 40 80603 0.0039 38530 9.9115 × 10−6

singular 52 120947 0.0032 73332 1.8319 × 10−5

singular 60 233482 0.0024 71258 1.9181 × 10−5

trid 10 908 6.6529 × 10−7 740 2.5511 × 10−7

trid 20 3308 2.7137 × 10−6 3352 2.9158 × 10−7

trid 30 7610 1.6093 × 10−5 11343 3.6927 × 10−7

trid 40 13888 9.8698 × 10−6 23173 4.4076 × 10−7

trid 50 24008 1.7782 × 10−5 42013 5.0978 × 10−7

trid 60 34853 2.0451 × 10−5 64369 7.1834 × 10−7

trig 10 2243 2.7961 × 10−5 961 2.7952 × 10−5

trig 20 12519 1.6045 × 10−6 4194 1.3504 × 10−6

trig 30 19754 3.5273 × 10−5 8202 9.9102 × 10−7

trig 40 23938 1.69412 × 10−5 17674 1.5598 × 10−6

trig 50 25328 2.9162 × 10−5 19426 3.6577 × 10−7

trig 60 33578 4.8213 × 10−5 31789 9.6665 × 10−7

vardim 6 1440 5.3381 × 10−9 1170 5.9536 × 10−9

vardim 12 3753 6.6382 4709 8.6227 × 10−9

vardim 18 6492 8.8146 12815 1.0898 × 10−8

vardim 24 13844 71.320 35033 1.1237 × 10−8

vardim 30 19769 85.397 67717 1.5981 × 10−8

vardim 36 32360 72.101 209340 1.8116 × 10−8

We summarize the numerical results in Tables 3 and 4. From these tables the
ANMS method clearly outperforms the SNMS method when they are used to solve
this set of higher dimensional problems. For problems bv, trid, and trig, the
SNMS method performs relatively well. We can see that it beats the ANMS method
on bv and trid and loses to the ANMS method on trig. For Problems band,
ie, lin, pen1, pen2, and singular, the ANMS method substantially out-
performs the SNMS method. For each case of Problems rosenbrock and for
vardim with n ≥ 12, SNMS terminated at a point which is far away from the mini-
mizer while ANMS was able to find a good approximation.

Implementing the Nelder-Mead simplex algorithm with adaptive 275

Table 5 SNMS on rosenbrock and vardim using smaller tolerances

Prob Dim nfeval Final f TolX=TolFun

rosenbrock 6 6958 1.3047 × 10−15 10−7

rosenbrock 12 58956 3.1150 × 10−20 10−10

rosenbrock 18 106 19.835 10−16

rosenbrock 24 106 22.208 10−16

rosenbrock 30 106 39.702 10−16

rosenbrock 36 106 51.134 10−16

vardim 12 106 4.5329 10−16

vardim 18 106 6.7089 10−16

vardim 24 106 48.673 10−16

vardim 30 106 34.342 10−16

vardim 36 106 70.602 10−16

We note that for this set of higher dimensional problems, the ANMS method was
always able to obtain a good approximation although it needs a large number of func-
tion evaluations in some cases (for example, pen1, rosenbrock, vardim).
However, the SNMS method can stagnate at a nonminimizer in some situations (for
example, lin, pen1, pen 2), even after a very large number of function evalu-
ations.

Since it seems that the SNMS method terminated prematurely on Problems
rosenbrock and vardim when the termination parameters (4.2) are used, we did
our last experiment testing the SNMS method by using smaller tolerances TolFun
and TolX. The numerical results are reported in Table 5. From this table we observe
that the SNMS method can stagnate when it is used to solve these two problems for
large dimensions.

5 Final remarks and future research

We have proven that the expansion and contraction steps of the standard Nelder-
Mead simplex algorithm possess a descent property when the objective function is
uniformly convex. This property offers some new insights on the behavior of the
Nelder-Mead algorithm. We have also proposed an adaptive Nelder-Mead simplex
(ANMS) method whose expansion, contraction, and shrink parameters depend on the
dimension of the optimization problem. Our numerical results have shown that the
ANMS method outperforms the standard Nelder-Mead method for high dimensional
problems.

We remark that the edges of the initial simplex (3.1) in the Matlab implementa-
tion FMINSEARCH [11] are quite short. This may be a good strategy for small di-
mensional problems. For high dimensional problems, we have observed that using a
larger initial simplex can improve the performance of the ANMS method. It is there-
fore desirable to study how to choose a suitable initial simplex. We also remark that

276 F. Gao, L. Han

Fig. 3 Fraction of steps which
are reflections of adaptive
Nelder-Mead plotted against
problem dimension for the
Extended Rosenbrock function

our choice of parameters in (4.1) is based on the analysis in Sects. 2 and 3 as well as
some numerical experiments. Given the significant improvement on the Nelder-Mead
method by using these adaptive parameters, it is worth to investigate how to choose
most suitable adaptive parameters. We leave both problems for future research.

We have not touched the convergence issues of the ANMS method in this paper.
It may suffer similar non-convergence as the SNMS method does. One can remedy
this by implementing the ANMS method in one of the convergent variants of the
Nelder-Mead method, such as [8, 15, 17].

A natural question is why the ANMS method needs large numbers of function
evaluations for Problems pen1, rosenbrock, vardim in high dimensions.
These functions are certainly difficult for both implementations of the Nelder-Mead
method. A more careful examination reveals that for these problems, the ANMS
method still uses a large number of reflections in high dimensions. We illustrate this
in Fig. 3, which shows the fractions of the reflection steps of the ANMS method on
the Extended Rosenbrock function. An interesting future research direction is to de-
velop a variant of the Nelder-Mead simplex method which uses fewer reflections for
difficult problems in high dimensions.

Acknowledgement We are very grateful to the referees for their constructive comments and sugges-
tions, which have helped improve the content and presentation of the paper.

References

1. Andrei, N.: Convex functions. Adv. Model. Optim. 9(2), 257–267 (2007)
2. Byatt, D.: Convergent variants of the Nelder-Mead algorithm. Master’s Thesis, University of Canter-

bury, Christchurch, New Zealand (2000)
3. Byrd, R., Nocedal, J., Zhu, C.: Towards a discrete Newton method with memory for large-scale op-

timization. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications. Plenum,
New York (1996)

4. Dennis, J.E. Jr., Torczon, V.: Direct search methods on parallel machines. SIAM J. Optim. 1, 448–474
(1991)

5. Dennis, J.E. Jr., Woods, D.J.: Optimization on microcomputers: The Nelder-Mead simplex algorithm.
In: Wouk, A. (ed.) New Computing Environments: Microcomputers in Large-Scale Scientific Com-
puting. SIAM, Philadelphia (1987)

Implementing the Nelder-Mead simplex algorithm with adaptive 277

6. Han, L., Neumann, M.: Effect of dimensionality on the Nelder-Mead simplex method. Optim. Meth-
ods Softw. 21(1), 1–16 (2006)

7. Kelley, C.T.: Iterative Methods for Optimization. SIAM Publications, Philadelphia (1999)
8. Kelley, C.T.: Detection and remediation of stagnation in the Nelder-Mead algorithm using a sufficient

decrease condition. SIAM J. Optim. 10, 43–55 (2000)
9. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some

classical and modern methods. SIAM Rev. 45, 385–482 (2003)
10. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.: Convergence properties of the Nelder-Mead

simplex algorithm in low dimensions. SIAM J. Optim. 9, 112–147 (1998)
11. Math Works: MATLAB 6, Release 12, The Math Works, Natick, MA (2000)
12. Mckinnon, K.I.M.: Convergence of the Nelder-Mead simplex method to a nonstationary point. SIAM

J. Optim. 9, 148–158 (1998)
13. Moré, J.J., Garbow, B.S., Hillstrom, B.E.: Testing unconstrained optimization software. ACM Trans.

Math. Softw. 7(1), 17–41 (1981)
14. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
15. Price, C.J., Coope, I.D., Byatt, D.: A convergent variant of the Nelder-Mead algorithm. JOTA 113,

5–19 (2002)
16. Torczon, V.: Multi-directional Search: A Direct Search Algorithm for Parallel Machines. Ph.D. Thesis,

Rice University, TX (1989)
17. Tseng, P.: Fortified-descent simplicial search method: a general approach. SIAM J. Optim. 10, 269–

288 (2000)
18. Woods, D.J.: An Iterative Approach for Solving Multi-objective Optimization Problems. Ph.D. Thesis,

Rice University, TX (1985)
19. Wright, M.H.: Direct search methods: Once scorned, now respectable. In: Griffiths, D.F., Watson,

G.A. (eds.) Numerical Analysis 1995: Proceedings of the 1995 Dundee Biennial Conference in Nu-
merical Analysis, pp. 191–208. Addison Wesley Longman, Harlow (1996)

20. Wright, M.H.: N&M@42: Nelder-Mead at 42′′ , a talk given at University of Waterloo, June 2007
21. Zalinescu, C.: On uniformly convex functions. J. Math. Anal. Appl. 95, 344–374 (1983)

	Implementing the Nelder-Mead simplex algorithm with adaptive parameters
	Abstract
	Introduction
	A sufficient descent property of the expansion and contraction steps
	Why the Nelder-Mead method becomes inefficient in high dimensions: some new insights
	Implementation using adaptive parameters
	New implementation
	Numerical results

	Final remarks and future research
	Acknowledgement
	References

