from scipy.optimize import minimize import numpy as np def main(): guess = np.zeros(3) fmin = minimize(fun=cost1, x0=guess, args=(3, 20, -25), method="Nelder-Mead") print(np.mean(fmin["final_simplex"][0], axis=0)) print(fmin) def cost1(X, a=2, b=9, c=15): return (X[0]-a)**2 + (X[1]-b)**2 + (X[2]-c)**2 if __name__ == '__main__': main()