remove non significant colors from plots, add filtering of fits for cv
@ -29,12 +29,13 @@ def main():
|
|||||||
#
|
#
|
||||||
behaviour_correlations_plot(fits_info)
|
behaviour_correlations_plot(fits_info)
|
||||||
#
|
#
|
||||||
# labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
|
labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
|
||||||
# par_labels = [parameter_titles[l] for l in labels]
|
par_labels = [parameter_titles[l] for l in labels]
|
||||||
# fig, ax = plt.subplots(1, 1)
|
fig, ax = plt.subplots(1, 1)
|
||||||
# create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "", colorbar=True)
|
#ax, labels, correlations, p_values, title, y_label=True
|
||||||
# plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.png")
|
create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "")
|
||||||
# plt.close()
|
plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.png")
|
||||||
|
plt.close()
|
||||||
|
|
||||||
# create_parameter_distributions(get_parameter_values(fits_info))
|
# create_parameter_distributions(get_parameter_values(fits_info))
|
||||||
|
|
||||||
@ -102,8 +103,9 @@ def create_correlation_plot(ax, labels, correlations, p_values, title, y_label=T
|
|||||||
for j in range(correlations.shape[1]):
|
for j in range(correlations.shape[1]):
|
||||||
if abs(p_values[i, j]) < 0.05:
|
if abs(p_values[i, j]) < 0.05:
|
||||||
cleaned_cors[i, j] = correlations[i, j]
|
cleaned_cors[i, j] = correlations[i, j]
|
||||||
|
else:
|
||||||
im = ax.imshow(correlations, vmin=-1, vmax=1)
|
cleaned_cors[i, j] = np.NAN
|
||||||
|
im = ax.imshow(cleaned_cors, vmin=-1, vmax=1)
|
||||||
|
|
||||||
# We want to show all ticks...
|
# We want to show all ticks...
|
||||||
ax.set_xticks(np.arange(len(labels)))
|
ax.set_xticks(np.arange(len(labels)))
|
||||||
|
@ -552,6 +552,7 @@ def calculate_list_error(fit, reference):
|
|||||||
|
|
||||||
return norm_error
|
return norm_error
|
||||||
|
|
||||||
|
|
||||||
def calculate_histogram_bins(isis):
|
def calculate_histogram_bins(isis):
|
||||||
isis = np.array(isis) * 1000
|
isis = np.array(isis) * 1000
|
||||||
step = 0.1
|
step = 0.1
|
||||||
|
@ -63,8 +63,13 @@ def get_filtered_fit_info(folder):
|
|||||||
if model_behaviour["f_zero_slope"] > 50000 or cell_behaviour["f_zero_slope"] > 50000:
|
if model_behaviour["f_zero_slope"] > 50000 or cell_behaviour["f_zero_slope"] > 50000:
|
||||||
print("f_zero_slope used to filter a fit")
|
print("f_zero_slope used to filter a fit")
|
||||||
continue
|
continue
|
||||||
if 1 - abs(model_behaviour["f_inf_slope"] - cell_behaviour["f_inf_slope"]) > 0.1:
|
# if (abs(model_behaviour["f_inf_slope"] - cell_behaviour["f_inf_slope"]) / cell_behaviour["f_inf_slope"]) > 0.25:
|
||||||
print("f_inf_slope used to filter a fit")
|
# print("f_inf_slope used to filter a fit")
|
||||||
|
# print((abs(model_behaviour["f_inf_slope"] - cell_behaviour["f_inf_slope"]) / cell_behaviour["f_inf_slope"]))
|
||||||
|
# continue
|
||||||
|
if abs((model_behaviour["coefficient_of_variation"] - cell_behaviour["coefficient_of_variation"]) /
|
||||||
|
cell_behaviour["coefficient_of_variation"]) > 0.25:
|
||||||
|
print("CV used to filter a fit")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
fits_info[item] = [results.get_final_parameters(), model_behaviour, cell_behaviour]
|
fits_info[item] = [results.get_final_parameters(), model_behaviour, cell_behaviour]
|
||||||
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 29 KiB After Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 59 KiB After Width: | Height: | Size: 19 KiB |