remove non significant colors from plots, add filtering of fits for cv

This commit is contained in:
a.ott 2020-09-11 17:55:44 +02:00
parent f5141a0760
commit f8a8e87f04
8 changed files with 18 additions and 10 deletions

View File

@ -29,12 +29,13 @@ def main():
# #
behaviour_correlations_plot(fits_info) behaviour_correlations_plot(fits_info)
# #
# labels, corr_values, corrected_p_values = parameter_correlations(fits_info) labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
# par_labels = [parameter_titles[l] for l in labels] par_labels = [parameter_titles[l] for l in labels]
# fig, ax = plt.subplots(1, 1) fig, ax = plt.subplots(1, 1)
# create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "", colorbar=True) #ax, labels, correlations, p_values, title, y_label=True
# plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.png") create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "")
# plt.close() plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.png")
plt.close()
# create_parameter_distributions(get_parameter_values(fits_info)) # create_parameter_distributions(get_parameter_values(fits_info))
@ -102,8 +103,9 @@ def create_correlation_plot(ax, labels, correlations, p_values, title, y_label=T
for j in range(correlations.shape[1]): for j in range(correlations.shape[1]):
if abs(p_values[i, j]) < 0.05: if abs(p_values[i, j]) < 0.05:
cleaned_cors[i, j] = correlations[i, j] cleaned_cors[i, j] = correlations[i, j]
else:
im = ax.imshow(correlations, vmin=-1, vmax=1) cleaned_cors[i, j] = np.NAN
im = ax.imshow(cleaned_cors, vmin=-1, vmax=1)
# We want to show all ticks... # We want to show all ticks...
ax.set_xticks(np.arange(len(labels))) ax.set_xticks(np.arange(len(labels)))

View File

@ -552,6 +552,7 @@ def calculate_list_error(fit, reference):
return norm_error return norm_error
def calculate_histogram_bins(isis): def calculate_histogram_bins(isis):
isis = np.array(isis) * 1000 isis = np.array(isis) * 1000
step = 0.1 step = 0.1

View File

@ -63,8 +63,13 @@ def get_filtered_fit_info(folder):
if model_behaviour["f_zero_slope"] > 50000 or cell_behaviour["f_zero_slope"] > 50000: if model_behaviour["f_zero_slope"] > 50000 or cell_behaviour["f_zero_slope"] > 50000:
print("f_zero_slope used to filter a fit") print("f_zero_slope used to filter a fit")
continue continue
if 1 - abs(model_behaviour["f_inf_slope"] - cell_behaviour["f_inf_slope"]) > 0.1: # if (abs(model_behaviour["f_inf_slope"] - cell_behaviour["f_inf_slope"]) / cell_behaviour["f_inf_slope"]) > 0.25:
print("f_inf_slope used to filter a fit") # print("f_inf_slope used to filter a fit")
# print((abs(model_behaviour["f_inf_slope"] - cell_behaviour["f_inf_slope"]) / cell_behaviour["f_inf_slope"]))
# continue
if abs((model_behaviour["coefficient_of_variation"] - cell_behaviour["coefficient_of_variation"]) /
cell_behaviour["coefficient_of_variation"]) > 0.25:
print("CV used to filter a fit")
continue continue
fits_info[item] = [results.get_final_parameters(), model_behaviour, cell_behaviour] fits_info[item] = [results.get_final_parameters(), model_behaviour, cell_behaviour]

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

After

Width:  |  Height:  |  Size: 19 KiB