add error of mean-square with the isi bins

This commit is contained in:
a.ott 2020-08-01 12:05:50 +02:00
parent e9c414dab5
commit eeb43fd7fc

126
Fitter.py
View File

@ -32,6 +32,7 @@ class Fitter:
self.sc_max_lag = 2
# values to be replicated:
self.isi_bins = np.array(0)
self.baseline_freq = 0
self.vector_strength = -1
self.serial_correlation = []
@ -64,20 +65,26 @@ class Fitter:
data_baseline = get_baseline_class(cell_data)
data_baseline.load_values(cell_data.get_data_path())
self.baseline_freq = data_baseline.get_baseline_frequency()
self.isi_bins = calculate_histogram_bins(data_baseline.get_interspike_intervals())
# plt.close()
# plt.plot(self.isi_bins)
# plt.show()
# plt.close()
self.vector_strength = data_baseline.get_vector_strength()
self.serial_correlation = data_baseline.get_serial_correlation(self.sc_max_lag)
self.coefficient_of_variation = data_baseline.get_coefficient_of_variation()
self.burstiness = data_baseline.get_burstiness()
fi_curve = get_fi_curve_class(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path())
self.f_inf_slope = fi_curve.get_f_inf_slope()
contrasts = np.array(cell_data.get_fi_contrasts())
fi_curve = get_fi_curve_class(cell_data, contrasts, save_dir=cell_data.get_data_path())
self.f_inf_slope = fi_curve.get_f_inf_slope()
if self.f_inf_slope < 0:
contrasts = contrasts * -1
# print("old contrasts:", cell_data.get_fi_contrasts())
# print("new contrasts:", contrasts)
contrasts = sorted(contrasts)
fi_curve = get_fi_curve_class(cell_data, contrasts)
fi_curve = get_fi_curve_class(cell_data, contrasts, save_dir=cell_data.get_data_path())
self.fi_contrasts = fi_curve.stimulus_values
self.f_inf_values = fi_curve.f_inf_frequencies
@ -121,9 +128,6 @@ class Fitter:
# error_list = [error_bf, error_vs, error_sc, error_cv, error_bursty,
# error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight, error_f0_curve]
if error_weights is None:
error_weights = (1, 2, 2, 2, 2, 1, 1, 1, 0, 1)
fmin = minimize(fun=self.cost_function_all,
args=(error_weights,), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 600, "maxiter": 400})
@ -150,13 +154,13 @@ class Fitter:
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
time1 = time.time()
# time1 = time.time()
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
time2 = time.time()
# time2 = time.time()
# print("time taken for finding v_offset: {:.2f}s".format(time2-time1))
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
# print("sum: {:.2f}, ".format(sum(error_list)))
if sum(error_list) < self.smallest_error:
@ -168,18 +172,18 @@ class Fitter:
if model is None:
model = self.base_model
time1 = time.time()
# time1 = time.time()
model_baseline = get_baseline_class(model, self.eod_freq, trials=3)
baseline_freq = model_baseline.get_baseline_frequency()
vector_strength = model_baseline.get_vector_strength()
serial_correlation = model_baseline.get_serial_correlation(self.sc_max_lag)
coefficient_of_variation = model_baseline.get_coefficient_of_variation()
burstiness = model_baseline.get_burstiness()
time2 = time.time()
# time2 = time.time()
isi_bins = calculate_histogram_bins(model_baseline.get_interspike_intervals())
# print("Time taken for all baseline parameters: {:.2f}".format(time2-time1))
time1 = time.time()
# time1 = time.time()
fi_curve_model = get_fi_curve_class(model, self.fi_contrasts, self.eod_freq, trials=8)
f_zeros = fi_curve_model.get_f_zero_frequencies()
f_infinities = fi_curve_model.get_f_inf_frequencies()
@ -187,15 +191,17 @@ class Fitter:
# f_zero_slopes = [fi_curve_model.get_f_zero_fit_slope_at_stimulus_value(x) for x in self.fi_contrasts]
f_zero_slope_at_straight = fi_curve_model.get_f_zero_fit_slope_at_stimulus_value(self.f_zero_straight_contrast)
time2 = time.time()
# time2 = time.time()
# print("Time taken for all fi-curve parameters: {:.2f}".format(time2 - time1))
# calculate errors with reference values
error_bf = abs((baseline_freq - self.baseline_freq) / self.baseline_freq)
error_vs = abs((vector_strength - self.vector_strength) / 0.1)
error_cv = abs((coefficient_of_variation - self.coefficient_of_variation) / 0.1)
error_cv = abs((coefficient_of_variation - self.coefficient_of_variation) / 0.2)
error_bursty = (abs(burstiness - self.burstiness) / 0.2)
error_hist = np.mean((isi_bins - self.isi_bins) ** 2) / 200
# print("error hist: {:.2f}".format(error_hist))
# print("Burstiness: cell {:.2f}, model: {:.2f}, error: {:.2f}".format(self.burstiness, burstiness, error_bursty))
error_sc = 0
@ -209,11 +215,11 @@ class Fitter:
# error_f_zero_slopes = calculate_list_error(f_zero_slopes, self.f_zero_slopes)
error_f_zero_slope_at_straight = abs(self.f_zero_slope_at_straight - f_zero_slope_at_straight) \
/ abs(self.f_zero_slope_at_straight+1 / 10)
error_f_zero = calculate_list_error(f_zeros, self.f_zero_values)
error_f_zero = calculate_list_error(f_zeros, self.f_zero_values) / 25
error_f0_curve = self.calculate_f0_curve_error(model, fi_curve_model)
error_f0_curve = self.calculate_f0_curve_error(model, fi_curve_model) / 10
error_list = [error_bf, error_vs, error_sc, error_cv, error_bursty,
error_list = [error_bf, error_vs, error_sc, error_cv, error_hist, error_bursty,
error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight, error_f0_curve]
self.errors.append(error_list)
@ -232,18 +238,20 @@ class Fitter:
return error_list
def calculate_f0_curve_error(self, model, fi_curve_model):
buffer = 0.05
buffer = 0.00
test_duration = 0.05
# prepare model frequency curve:
times, freqs = fi_curve_model.get_mean_time_and_freq_traces()
freq_prediction = np.array(freqs[self.f_zero_curve_contrast_idx])
time_prediction = np.array(times[self.f_zero_curve_contrast_idx])
if len(time_prediction) == 0:
return 200
stimulus_start = fi_curve_model.get_stimulus_start() - time_prediction[0]
model_start_idx = int((stimulus_start - buffer) / fi_curve_model.get_sampling_interval())
model_end_idx = int((stimulus_start - buffer + test_duration) / model.get_sampling_interval())
model_end_idx = int((stimulus_start + buffer + test_duration) / model.get_sampling_interval())
if len(time_prediction) == 0 or len(time_prediction) < model_end_idx \
or time_prediction[0] > fi_curve_model.get_stimulus_start():
@ -256,7 +264,7 @@ class Fitter:
stimulus_start = self.recording_times[1] - self.f_zero_curve_time[0]
cell_start_idx = int((stimulus_start - buffer) / self.data_sampling_interval)
cell_end_idx = int((stimulus_start - buffer + test_duration) / self.data_sampling_interval)
cell_end_idx = int((stimulus_start + buffer + test_duration) / self.data_sampling_interval)
if round(model.get_sampling_interval() % self.data_sampling_interval, 4) == 0:
step_cell = int(round(model.get_sampling_interval() / self.data_sampling_interval))
@ -264,7 +272,6 @@ class Fitter:
raise ValueError("Model sampling interval is not a multiple of data sampling interval.")
cell_curve = self.f_zero_curve_freq[cell_start_idx:cell_end_idx:step_cell]
# plt.close()
# plt.plot(cell_curve)
# plt.plot(model_curve)
@ -280,6 +287,69 @@ class Fitter:
return error_f0_curve
def calculate_f0_curve_error_new(self, model, fi_curve_model):
buffer = 0.05
test_duration = 0.05
times, freqs = fi_curve_model.get_mean_time_and_freq_traces()
freq_prediction = np.array(freqs[self.f_zero_curve_contrast_idx])
time_prediction = np.array(times[self.f_zero_curve_contrast_idx])
if len(time_prediction) == 0:
return 200
stimulus_start = fi_curve_model.get_stimulus_start() - time_prediction[0]
model_start_idx = int((stimulus_start - buffer) / model.get_sampling_interval())
model_end_idx = int((stimulus_start + buffer + test_duration) / model.get_sampling_interval())
if len(time_prediction) == 0 or len(time_prediction) < model_end_idx \
or time_prediction[0] > fi_curve_model.get_stimulus_start():
error_f0_curve = 200
return error_f0_curve
model_curve = np.array(freq_prediction[model_start_idx:model_end_idx])
# prepare cell frequency_curve:
stimulus_start = self.recording_times[1] - self.f_zero_curve_time[0]
cell_start_idx = int((stimulus_start - buffer) / self.data_sampling_interval)
cell_end_idx = int((stimulus_start - buffer + test_duration) / self.data_sampling_interval)
if round(model.get_sampling_interval() % self.data_sampling_interval, 4) == 0:
step_cell = int(round(model.get_sampling_interval() / self.data_sampling_interval))
else:
raise ValueError("Model sampling interval is not a multiple of data sampling interval.")
cell_curve = self.f_zero_curve_freq[cell_start_idx:cell_end_idx:step_cell]
cell_time = self.f_zero_curve_time[cell_start_idx:cell_end_idx:step_cell]
cell_curve_std = np.std(self.f_zero_curve_freq)
model_curve_std = np.std(freq_prediction)
model_limit = self.baseline_freq + model_curve_std
cell_limit = self.baseline_freq + cell_curve_std
cell_full_precicion = np.array(self.f_zero_curve_freq[cell_start_idx:cell_end_idx])
cell_points_above = cell_full_precicion > cell_limit
cell_area_above = sum(cell_full_precicion[cell_points_above]) * self.data_sampling_interval
model_points_above = model_curve > model_limit
model_area_above = sum(model_curve[model_points_above]) * model.get_sampling_interval()
# plt.close()
# plt.plot(cell_time, cell_curve, color="blue")
# plt.plot((cell_time[0], cell_time[-1]), (cell_limit, cell_limit),
# color="lightblue", label="area: {:.2f}".format(cell_area_above))
#
# plt.plot(time_prediction[model_start_idx:model_end_idx], model_curve, color="orange")
# plt.plot((time_prediction[model_start_idx], time_prediction[model_end_idx]), (model_limit, model_limit),
# color="red", label="area: {:.2f}".format(model_area_above))
# plt.legend()
# plt.title("Error: {:.2f}".format(abs(model_area_above - cell_area_above) / 0.02))
# plt.savefig("./figures/f_zero_curve_error_{}.png".format(time.strftime("%H:%M:%S")))
# plt.close()
return abs(model_area_above - cell_area_above)
def calculate_list_error(fit, reference):
error = 0
@ -290,6 +360,14 @@ def calculate_list_error(fit, reference):
return norm_error
def calculate_histogram_bins(isis):
isis = np.array(isis) * 1000
step = 0.1
bins = np.arange(0, 50, step)
counts = np.array([np.sum((isis >= b) & (isis < b+0.1)) for b in bins])
return counts
def normed_quadratic_freq_error(fit, ref, factor=2):
return (abs(fit-ref)/factor)**2 / ref