add function to test the effect of eod frequency and refractory period
This commit is contained in:
parent
c6e07207f3
commit
e75c262532
@ -8,12 +8,14 @@ import copy
|
||||
import os
|
||||
|
||||
|
||||
SEARCH_WIDTH = 1.1
|
||||
SEARCH_PRECISION = 1
|
||||
SEARCH_WIDTH = 3
|
||||
SEARCH_PRECISION = 40
|
||||
CONTRASTS = np.arange(-0.4, 0.45, 0.1)
|
||||
|
||||
|
||||
def main():
|
||||
test_effect_of_two_variables()
|
||||
quit()
|
||||
model_parameters1 = {'threshold': 1,
|
||||
'step_size': 5e-05,
|
||||
'a_zero': 2,
|
||||
@ -25,23 +27,110 @@ def main():
|
||||
'tau_a': 0.05958195972016753,
|
||||
'input_scaling': 119.81500448274554,
|
||||
'dend_tau': 0.0027746086464721723,
|
||||
'v_offset': -24.21875}
|
||||
'v_offset': -24.21875,
|
||||
'refractory_period': 0.0006}
|
||||
|
||||
model_parameters2 = {'v_offset': -15.234375, 'input_scaling': 64.94152780134829, 'step_size': 5e-05, 'a_zero': 2,
|
||||
'threshold': 1, 'v_base': 0, 'delta_a': 0.04763179657857666, 'tau_a': 0.07891848949732623,
|
||||
'mem_tau': 0.004828473985707999, 'noise_strength': 0.017132801387559883,
|
||||
'v_zero': 0, 'dend_tau': 0.0015230454266819539}
|
||||
'v_zero': 0, 'dend_tau': 0.0015230454266819539, 'refractory_period': 0.0006}
|
||||
|
||||
parameters_to_test = ["input_scaling", "dend_tau", "mem_tau", "noise_strength", "v_offset", "delta_a", "tau_a"]
|
||||
parameters_to_test = ["input_scaling", "refractory_period", "dend_tau", "mem_tau", "noise_strength", "v_offset", "delta_a", "tau_a"]
|
||||
# parameters_to_test = ["refractory_period", "input_scaling"]
|
||||
effect_data = []
|
||||
for p in parameters_to_test:
|
||||
print("Working on parameter " + p)
|
||||
effect_data.append(test_parameter_effect(model_parameters2, p))
|
||||
effect_data.append(test_parameter_effect(model_parameters2, p, 600))
|
||||
|
||||
plot_effects(effect_data, "./figures/variable_effect/")
|
||||
|
||||
|
||||
def test_parameter_effect(model_parameters, test_parameter):
|
||||
def test_effect_of_two_variables():
|
||||
eod_freqs = np.arange(100, 1001, 20)
|
||||
ref_periods = np.arange(0, 0.00201, 0.0001)
|
||||
variables = ("bf", "vs", "sc", "cv", "burst", "f_inf_s", "f_zero_s")
|
||||
colorbar_labels = ("Frequency in Hz", "Vector strength", "serial correlation lag=1", "Coefficient of Variation",
|
||||
"Burstiness", "f_inf slope", "f_zero slope")
|
||||
|
||||
# base eod frequency would be 771!
|
||||
base_parameters = {'step_size': 5e-05, 'mem_tau': 0.0076958612706114595, 'v_base': 0, 'v_zero': 0, 'threshold': 1,
|
||||
'v_offset': -37.5, 'input_scaling': 181.40702315746051, 'delta_a': 0.333391796423963,
|
||||
'tau_a': 0.17301586167067445, 'a_zero': 2, 'noise_strength': 0.017424670423939775,
|
||||
'dend_tau': 0.0037179224836952356, 'refractory_period': 0.0010602702699897444}
|
||||
|
||||
# base eod frequency would be 657!
|
||||
base_parameters = {'refractory_period': 0.0008347981797599925, 'v_base': 0, 'v_zero': 0, 'a_zero': 2,
|
||||
'step_size': 5e-05, 'delta_a': 0.10570085698152036, 'threshold': 1,
|
||||
'input_scaling': 85.7818875779873, 'mem_tau': 0.01094261953657057, 'tau_a': 0.07741757133763925,
|
||||
'v_offset': -10.15625, 'noise_strength': 0.03080655781041302, 'dend_tau': 0.0013624430015225777}
|
||||
|
||||
|
||||
effects = []
|
||||
for eod_freq in eod_freqs:
|
||||
effects_with_const_eod_freq = []
|
||||
for ref_period in ref_periods:
|
||||
model_parameters = copy.deepcopy(base_parameters)
|
||||
model_parameters["refractory_period"] = ref_period
|
||||
effects_with_const_eod_freq.append(test_model(model_parameters, eod_freq))
|
||||
|
||||
effects.append(effects_with_const_eod_freq)
|
||||
|
||||
if not os.path.exists("./figures/eod_and_ref_period_effect/"):
|
||||
os.makedirs("./figures/eod_and_ref_period_effect/")
|
||||
|
||||
for x, variable in enumerate(variables):
|
||||
matrix = np.zeros((len(eod_freqs), len(ref_periods)))
|
||||
for i in range(len(eod_freqs)):
|
||||
for j in range(len(ref_periods)):
|
||||
matrix[i, j] = effects[i][j][variable]
|
||||
|
||||
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))
|
||||
|
||||
im = axes.imshow(matrix)
|
||||
cbar = axes.figure.colorbar(im, ax=axes)
|
||||
cbar.ax.set_ylabel(colorbar_labels[x], rotation=-90, va="bottom")
|
||||
|
||||
axes.set_title(variable)
|
||||
axes.set_xlabel("Refractory periods in ms")
|
||||
axes.set_ylabel("EOD frequency in Hz")
|
||||
|
||||
axes.set_xticks(np.arange(len(ref_periods)))
|
||||
axes.set_yticks(np.arange(len(eod_freqs)))
|
||||
# ... and label them with the respective list entries
|
||||
axes.set_xticklabels(["{:.2f}".format(r*1000) for r in ref_periods])
|
||||
axes.set_yticklabels(eod_freqs)
|
||||
plt.setp(axes.get_xticklabels(), rotation=45, ha="right",
|
||||
rotation_mode="anchor")
|
||||
|
||||
axes.set_ylabel("Eod frequencies")
|
||||
plt.tight_layout()
|
||||
|
||||
plt.savefig("./figures/eod_and_ref_period_effect/" + variable + ".png")
|
||||
plt.close()
|
||||
|
||||
|
||||
def test_model(model_parameters, eod_freq):
|
||||
model = LifacNoiseModel(model_parameters)
|
||||
print(model.get_parameters())
|
||||
|
||||
fi_curve = FICurveModel(model, CONTRASTS, eod_freq, trials=10)
|
||||
f_inf_s = fi_curve.get_f_inf_slope()
|
||||
f_inf_v = fi_curve.get_f_inf_frequencies()
|
||||
f_zero_s = fi_curve.get_f_zero_fit_slope_at_stimulus_value(0.1)
|
||||
f_zero_v = fi_curve.get_f_zero_frequencies()
|
||||
|
||||
baseline = BaselineModel(model, eod_freq, trials=3)
|
||||
bf = baseline.get_baseline_frequency()
|
||||
vs = baseline.get_vector_strength()
|
||||
sc = baseline.get_serial_correlation(1)[0]
|
||||
cv = baseline.get_coefficient_of_variation()
|
||||
burst = baseline.get_burstiness()
|
||||
|
||||
return {"f_inf_s": f_inf_s, "f_inf_v": f_inf_v, "f_zero_s": f_zero_s, "f_zero_v": f_zero_v,
|
||||
"bf": bf, "vs": vs, "sc": sc, "cv": cv, "burst": burst}
|
||||
|
||||
|
||||
def test_parameter_effect(model_parameters, test_parameter, eod_freq):
|
||||
model_parameters = copy.deepcopy(model_parameters)
|
||||
start_value = model_parameters[test_parameter]
|
||||
|
||||
@ -54,20 +143,19 @@ def test_parameter_effect(model_parameters, test_parameter):
|
||||
vs = []
|
||||
sc = []
|
||||
cv = []
|
||||
burst = []
|
||||
|
||||
f_inf_s = []
|
||||
f_inf_v = []
|
||||
f_zero_s = []
|
||||
f_zero_v = []
|
||||
fi_curves = []
|
||||
broken_i = []
|
||||
|
||||
for i in range(len(values)):
|
||||
model_parameters[test_parameter] = values[i]
|
||||
model = LifacNoiseModel(model_parameters)
|
||||
|
||||
fi_curve = FICurveModel(model, CONTRASTS, 600, trials=1)
|
||||
fi_curves.append(fi_curve)
|
||||
fi_curve = FICurveModel(model, CONTRASTS, eod_freq, trials=10)
|
||||
f_inf_s.append(fi_curve.get_f_inf_slope())
|
||||
f_inf_v.append(fi_curve.get_f_inf_frequencies())
|
||||
f_zero_s.append(fi_curve.get_f_zero_fit_slope_at_stimulus_value(0.1))
|
||||
@ -82,11 +170,12 @@ def test_parameter_effect(model_parameters, test_parameter):
|
||||
|
||||
fi_curve.plot_f_point_detections(detection_save_path)
|
||||
|
||||
baseline = BaselineModel(model, 600, trials=1)
|
||||
baseline = BaselineModel(model, eod_freq, trials=3)
|
||||
bf.append(baseline.get_baseline_frequency())
|
||||
vs.append(baseline.get_vector_strength())
|
||||
sc.append(baseline.get_serial_correlation(2))
|
||||
cv.append(baseline.get_coefficient_of_variation())
|
||||
burst.append(baseline.get_burstiness())
|
||||
|
||||
values = list(values)
|
||||
if len(broken_i) > 0:
|
||||
@ -94,22 +183,22 @@ def test_parameter_effect(model_parameters, test_parameter):
|
||||
for i in broken_i:
|
||||
del values[i]
|
||||
|
||||
return ParameterEffectData(fi_curves, values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v)
|
||||
return ParameterEffectData(values, test_parameter, bf, vs, sc, cv, burst, f_inf_s, f_inf_v, f_zero_s, f_zero_v)
|
||||
# plot_effects(values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v)
|
||||
|
||||
|
||||
def plot_effects(par_effect_data_list, save_path=None):
|
||||
|
||||
names = ("bf", "vs", "sc", "cv", "f_inf_s", "f_inf_v", "f_zero_s", "f_zero_v", "f_zero_fit_x_0")
|
||||
names = ("bf", "vs", "sc", "cv", "burstiness", "f_inf_s", "f_inf_v", "f_zero_s", "f_zero_v")
|
||||
|
||||
fig, axes = plt.subplots(len(names), len(par_effect_data_list), figsize=(32, 4*len(par_effect_data_list)), sharex="col")
|
||||
fig, axes = plt.subplots(len(names), len(par_effect_data_list), figsize=(4*len(par_effect_data_list), 4*len(names)), sharex="col")
|
||||
|
||||
for j in range(len(par_effect_data_list)):
|
||||
ped = par_effect_data_list[j]
|
||||
|
||||
ranges = ((0, max(ped.get_data("bf")) * 1.1), (0, 1), (-1, 1), (0, 1),
|
||||
ranges = ((0, max(ped.get_data("bf")) * 1.1), (0, 1), (-1, 1), (0, 1), (0, 1),
|
||||
(0, max(ped.get_data("f_inf_s")) * 1.1), (0, 800),
|
||||
(0, max(ped.get_data("f_zero_s")) * 1.1), (0, 10000), (-0.5, max(ped.get_data("f_zero_fit_x_0"))))
|
||||
(0, max(ped.get_data("f_zero_s")) * 1.1), (0, 10000))
|
||||
values = ped.values
|
||||
|
||||
for i in range(len(names)):
|
||||
@ -137,10 +226,9 @@ def plot_effects(par_effect_data_list, save_path=None):
|
||||
|
||||
|
||||
class ParameterEffectData:
|
||||
data_names = ("bf", "vs", "sc", "cv", "f_inf_s", "f_inf_v" "f_zero_s", "f_zero_v", "f_zero_fit_x_0")
|
||||
data_names = ("bf", "vs", "sc", "cv", "burstiness","f_inf_s", "f_inf_v" "f_zero_s", "f_zero_v")
|
||||
|
||||
def __init__(self, fi_curves, values, test_parameter, bf, vs, sc, cv, f_inf_s, f_inf_v, f_zero_s, f_zero_v):
|
||||
self.fi_curves = fi_curves
|
||||
def __init__(self, values, test_parameter, bf, vs, sc, cv, burstiness, f_inf_s, f_inf_v, f_zero_s, f_zero_v):
|
||||
self.values = values
|
||||
self.test_parameter = test_parameter
|
||||
self.bf = bf
|
||||
@ -151,6 +239,7 @@ class ParameterEffectData:
|
||||
self.f_inf_v = f_inf_v
|
||||
self.f_zero_s = f_zero_s
|
||||
self.f_zero_v = f_zero_v
|
||||
self.burstiness = burstiness
|
||||
|
||||
def get_data(self, name):
|
||||
if name == "bf":
|
||||
@ -169,10 +258,8 @@ class ParameterEffectData:
|
||||
return self.f_zero_s
|
||||
elif name == "f_zero_v":
|
||||
return self.f_zero_v
|
||||
elif name == "f_zero_fit_x_0":
|
||||
fits = [fi.f_zero_fit for fi in self.fi_curves]
|
||||
x_zeros = [fit[3] for fit in fits]
|
||||
return x_zeros
|
||||
elif name == "burstiness":
|
||||
return self.burstiness
|
||||
else:
|
||||
raise ValueError("Unknown attribute name!")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user