prepare for fit on kraken

This commit is contained in:
alexanderott 2021-02-03 14:17:15 +01:00
parent 919a63b36a
commit e5af50def8
4 changed files with 45 additions and 11 deletions

13
AnalysisMasterScript.py Normal file
View File

@ -0,0 +1,13 @@
import os
import Figures_Baseline
import Figures_Stimuli
import Figures_Model
import Figures_results
def main():
pass
if __name__ == '__main__':
main()

View File

@ -5,6 +5,9 @@ from plottools.axes import labelaxes_params
SAVE_FOLDER = "./thesis/figures/"
SAVE_FOLDER_FIGURES = "./figures/analysis/"
SAVE_FOLDER_PREANALYSIS = "./temp/"
FIG_SIZE_SMALL = (2, 2)
FIG_SIZE_MEDIUM = (4, 4)
FIG_SIZE_LARGE = (6, 6)

View File

@ -14,7 +14,7 @@ from my_util.helperFunctions import plot_errors
import multiprocessing as mp
SAVE_DIRECTORY = "./results/final_sam2/"
SAVE_DIRECTORY = "./results/sam_cells/"
# SAVE_DIRECTORY_BEST = "./results/final_sam2_best/"
# SAVE_DIRECTORY = "./results/ref_and_tau/no_dend_tau/"
@ -94,7 +94,10 @@ def fit_cell_parallel(cell_data, start_parameters):
print(cell_path)
core_count = mp.cpu_count()
pool = mp.Pool(core_count - 1)
# normal
# pool = mp.Pool(core_count - 1)
# kraken (24 cores with 6 used by dennis atm)
pool = mp.Pool(16)
parameters = []
for i, p in enumerate(start_parameters):
@ -116,13 +119,13 @@ def iget_start_parameters():
# mem_tau, input_scaling, noise_strength, dend_tau,
# expand by tau_a, delta_a ?
mem_tau_list = [0.001]
input_scaling_list = [80]
noise_strength_list = [0.01]
dend_tau_list = [0.002]
mem_tau_list = [0.001, 0.002, 0.004]
input_scaling_list = [20, 200]
noise_strength_list = [0.01, 0.04]
dend_tau_list = [0.002, 0.005]
delta_a_list = [0.01, 0.03, 0.065]
tau_a_list = [0.02, 0.04]
ref_time_list = [0.00065, 0.0012]
tau_a_list = [0.05, 0.12]
ref_time_list = [0.00065, 0.001]
for mem_tau in mem_tau_list:
for input_scaling in input_scaling_list:

21
test.py
View File

@ -4,15 +4,30 @@ import numpy as np
from fitting.ModelFit import ModelFit, get_best_fit
# from plottools.axes import labelaxes_params
import matplotlib.pyplot as plt
from run_Fitter import iget_start_parameters
colors = ["black", "red", "blue", "orange", "green"]
def main():
# sam_tests()
# cells = 40
number = len([i for i in iget_start_parameters()])
single_core = number * 1400 / 60 / 60
print("start parameters:", number)
print("single core time:", single_core, "h")
print("single core time:", single_core/24, "days")
cores = 16
cells = 40
print(cores, "core time:", single_core/cores, "h")
print(cores, "core time:", single_core / 24 / cores, "days")
print(cores, "core time all", cells, "cells:", single_core / 24 / cores * cells, "days")
print("left over:", number%cores)
fit = get_best_fit("results/final_sam2/2012-12-20-ae-invivo-1/")
fit.generate_master_plot()
# fit = get_best_fit("results/final_sam2/2012-12-20-ae-invivo-1/")
# fit.generate_master_plot()
def sam_tests():