move detection (f_zero,...) and fitting to helperfunctions

This commit is contained in:
AlexanderOtt 2020-04-02 10:09:10 +02:00
parent af40a60189
commit d2e83e8bc2

View File

@ -6,6 +6,7 @@ from scipy.stats import linregress
import matplotlib.pyplot as plt
from warnings import warn
import functions as fu
import helperFunctions as hF
class FICurve:
@ -29,12 +30,16 @@ class FICurve:
self.f_infinity_fit = []
self.all_calculate_frequency_points()
self.fit_line()
self.fit_boltzmann()
self.f_infinity_fit = hF.fit_clipped_line(self.stimulus_value, self.f_infinities)
self.boltzmann_fit_vars = hF.fit_boltzmann(self.stimulus_value, self.f_zeros)
def all_calculate_frequency_points(self):
mean_frequencies = self.cell_data.get_mean_isi_frequencies()
time_axes = self.cell_data.get_time_axes_mean_frequencies()
stimulus_start = self.cell_data.get_stimulus_start()
stimulus_duration = self.cell_data.get_stimulus_duration()
sampling_interval = self.cell_data.get_sampling_interval()
if len(mean_frequencies) == 0:
warn("FICurve:all_calculate_frequency_points(): mean_frequencies is empty.\n"
"Was all_calculate_mean_isi_frequencies already called?")
@ -48,110 +53,97 @@ class FICurve:
self.f_infinities.append(-1)
continue
self.f_zeros.append(self.__calculate_f_zero__(time_axes[i], mean_frequencies[i]))
self.f_baselines.append(self.__calculate_f_baseline__(time_axes[i], mean_frequencies[i]))
self.f_infinities.append(self.__calculate_f_infinity__(time_axes[i], mean_frequencies[i]))
def fit_line(self):
popt, pcov = curve_fit(fu.clipped_line, self.stimulus_value, self.f_infinities)
self.f_infinity_fit = popt
def fit_boltzmann(self):
max_f0 = float(max(self.f_zeros))
min_f0 = 0.1 # float(min(self.f_zeros))
mean_int = float(np.mean(self.stimulus_value))
total_increase = max_f0 - min_f0
total_change_int = max(self.stimulus_value) - min(self.stimulus_value)
start_k = float((total_increase / total_change_int * 4) / max_f0)
popt, pcov = curve_fit(fu.full_boltzmann, self.stimulus_value, self.f_zeros,
p0=(max_f0, min_f0, start_k, mean_int),
maxfev=10000, bounds=([0, 0, -np.inf, -np.inf], [5000, 1, np.inf, np.inf]))
self.boltzmann_fit_vars = popt
def __calculate_f_baseline__(self, time, frequency, buffer=0.025):
stim_start = self.cell_data.get_stimulus_start() - time[0]
sampling_interval = self.cell_data.get_sampling_interval()
if stim_start < 0.1:
warn("FICurve:__calculate_f_baseline__(): Quite short delay at the start.")
start_idx = 0
end_idx = int((stim_start-buffer)/sampling_interval)
f_baseline = np.mean(frequency[start_idx:end_idx])
return f_baseline
def __calculate_f_zero__(self, time, frequency, peak_buffer_percent=0.05, buffer=0.025):
stimulus_start = self.cell_data.get_stimulus_start() - time[0] # time start is generally != 0 and != delay
sampling_interval = self.cell_data.get_sampling_interval()
freq_before = frequency[0:int((stimulus_start - buffer) / sampling_interval)]
min_before = min(freq_before)
max_before = max(freq_before)
mean_before = np.mean(freq_before)
# time where the f-zero is searched in
start_idx = int((stimulus_start-0.1*buffer) / sampling_interval)
end_idx = int((stimulus_start + buffer) / sampling_interval)
min_during_start_of_stim = min(frequency[start_idx:end_idx])
max_during_start_of_stim = max(frequency[start_idx:end_idx])
if abs(mean_before-min_during_start_of_stim) > abs(max_during_start_of_stim-mean_before):
f_zero = min_during_start_of_stim
else:
f_zero = max_during_start_of_stim
peak_buffer = (max_before - min_before) * peak_buffer_percent
if min_before - peak_buffer <= f_zero <= max_before + peak_buffer:
end_idx = start_idx + int((end_idx-start_idx)/2)
f_zero = np.mean(frequency[start_idx:end_idx])
return f_zero
# start_idx = int(stimulus_start / sampling_interval)
# end_idx = int((stimulus_start + buffer*2) / sampling_interval)
#
# freq_before = frequency[start_idx-(int(length_of_mean/sampling_interval)):start_idx]
# fb_mean = np.mean(freq_before)
# fb_std = np.std(freq_before)
#
# peak_frequency = fb_mean
# count = 0
# for i in range(start_idx + 1, end_idx):
# if fb_mean-3*fb_std <= frequency[i] <= fb_mean+3*fb_std:
# continue
#
# if abs(frequency[i] - fb_mean) > abs(peak_frequency - fb_mean):
# peak_frequency = frequency[i]
# count += 1
# return peak_frequency
def __calculate_f_infinity__(self, time, frequency, length=0.1, buffer=0.025):
stimulus_end_time = self.cell_data.get_stimulus_start() + self.cell_data.get_stimulus_duration() - time[0]
start_idx = int((stimulus_end_time - length - buffer) / self.cell_data.get_sampling_interval())
end_idx = int((stimulus_end_time - buffer) / self.cell_data.get_sampling_interval())
# TODO add way to plot detected f_zero, f_inf, f_base. With detection of remaining slope?
# x = np.arange(start_idx, end_idx, 1) # time[start_idx:end_idx]
# slope, intercept, r_value, p_value, std_err = linregress(x, frequency[start_idx:end_idx])
# if p_value < 0.0001:
# plt.title("significant slope: {:.2f}, p: {:.5f}, r: {:.5f}".format(slope, p_value, r_value))
# plt.plot(x, [i*slope + intercept for i in x], color="black")
#
#
# plt.plot((start_idx, end_idx), (np.mean(frequency[start_idx:end_idx]), np.mean(frequency[start_idx:end_idx])), label="f_inf")
# plt.legend()
# plt.show()
# plt.close()
return np.mean(frequency[start_idx:end_idx])
f_zero = hF.detect_f_zero_in_frequency_trace(time_axes[i], mean_frequencies[i],
stimulus_start, sampling_interval)
self.f_zeros.append(f_zero)
f_baseline = hF.detect_f_baseline_in_freq_trace(time_axes[i], mean_frequencies[i],
stimulus_start, sampling_interval)
self.f_baselines.append(f_baseline)
f_infinity = hF.detect_f_infinity_in_freq_trace(time_axes[i], mean_frequencies[i],
stimulus_start, stimulus_duration, sampling_interval)
self.f_infinities.append(f_infinity)
# def __calculate_f_baseline__(self, time, frequency, buffer=0.025):
#
# stim_start = self.cell_data.get_stimulus_start() - time[0]
# sampling_interval = self.cell_data.get_sampling_interval()
# if stim_start < 0.1:
# warn("FICurve:__calculate_f_baseline__(): Quite short delay at the start.")
#
# start_idx = 0
# end_idx = int((stim_start-buffer)/sampling_interval)
# f_baseline = np.mean(frequency[start_idx:end_idx])
#
# return f_baseline
#
# def __calculate_f_zero__(self, time, frequency, peak_buffer_percent=0.05, buffer=0.025):
#
# stimulus_start = self.cell_data.get_stimulus_start() - time[0] # time start is generally != 0 and != delay
# sampling_interval = self.cell_data.get_sampling_interval()
#
# freq_before = frequency[0:int((stimulus_start - buffer) / sampling_interval)]
# min_before = min(freq_before)
# max_before = max(freq_before)
# mean_before = np.mean(freq_before)
#
# # time where the f-zero is searched in
# start_idx = int((stimulus_start-0.1*buffer) / sampling_interval)
# end_idx = int((stimulus_start + buffer) / sampling_interval)
#
# min_during_start_of_stim = min(frequency[start_idx:end_idx])
# max_during_start_of_stim = max(frequency[start_idx:end_idx])
#
# if abs(mean_before-min_during_start_of_stim) > abs(max_during_start_of_stim-mean_before):
# f_zero = min_during_start_of_stim
# else:
# f_zero = max_during_start_of_stim
#
# peak_buffer = (max_before - min_before) * peak_buffer_percent
# if min_before - peak_buffer <= f_zero <= max_before + peak_buffer:
# end_idx = start_idx + int((end_idx-start_idx)/2)
# f_zero = np.mean(frequency[start_idx:end_idx])
#
# return f_zero
#
# # start_idx = int(stimulus_start / sampling_interval)
# # end_idx = int((stimulus_start + buffer*2) / sampling_interval)
# #
# # freq_before = frequency[start_idx-(int(length_of_mean/sampling_interval)):start_idx]
# # fb_mean = np.mean(freq_before)
# # fb_std = np.std(freq_before)
# #
# # peak_frequency = fb_mean
# # count = 0
# # for i in range(start_idx + 1, end_idx):
# # if fb_mean-3*fb_std <= frequency[i] <= fb_mean+3*fb_std:
# # continue
# #
# # if abs(frequency[i] - fb_mean) > abs(peak_frequency - fb_mean):
# # peak_frequency = frequency[i]
# # count += 1
#
# # return peak_frequency
#
# def __calculate_f_infinity__(self, time, frequency, length=0.1, buffer=0.025):
# stimulus_end_time = self.cell_data.get_stimulus_start() + self.cell_data.get_stimulus_duration() - time[0]
#
# start_idx = int((stimulus_end_time - length - buffer) / self.cell_data.get_sampling_interval())
# end_idx = int((stimulus_end_time - buffer) / self.cell_data.get_sampling_interval())
#
# # TODO add way to plot detected f_zero, f_inf, f_base. With detection of remaining slope?
# # x = np.arange(start_idx, end_idx, 1) # time[start_idx:end_idx]
# # slope, intercept, r_value, p_value, std_err = linregress(x, frequency[start_idx:end_idx])
# # if p_value < 0.0001:
# # plt.title("significant slope: {:.2f}, p: {:.5f}, r: {:.5f}".format(slope, p_value, r_value))
# # plt.plot(x, [i*slope + intercept for i in x], color="black")
# #
# #
# # plt.plot((start_idx, end_idx), (np.mean(frequency[start_idx:end_idx]), np.mean(frequency[start_idx:end_idx])), label="f_inf")
# # plt.legend()
# # plt.show()
# # plt.close()
#
# return np.mean(frequency[start_idx:end_idx])
def get_f_zero_inverse_at_frequency(self, frequency):
b_vars = self.boltzmann_fit_vars
@ -226,7 +218,6 @@ class FICurve:
if comp_f_zeros is not None:
plt.plot(self.stimulus_value, comp_f_zeros, 'o', color='wheat', label='comp_values f_zero')
plt.legend()
plt.ylabel("Frequency [Hz]")
if self.using_contrast:
@ -236,6 +227,7 @@ class FICurve:
if savepath is None:
plt.show()
else:
print("save")
plt.savefig(savepath + "fi_curve.png")
plt.close()
@ -246,9 +238,9 @@ class FICurve:
for i in range(len(mean_frequencies)):
fig, axes = plt.subplots(1, 1, sharex="all")
axes.plot(time_axes[i], mean_frequencies[i], label="voltage")
axes.plot((time_axes[i][0],time_axes[i][-1]), (self.f_zeros[i], self.f_zeros[i]), label="f_zero")
axes.plot((time_axes[i][0],time_axes[i][-1]), (self.f_infinities[i], self.f_infinities[i]), '--', label="f_inf")
axes.plot((time_axes[i][0],time_axes[i][-1]), (self.f_baselines[i], self.f_baselines[i]), label="f_base")
axes.plot((time_axes[i][0], time_axes[i][-1]), (self.f_zeros[i], self.f_zeros[i]), label="f_zero")
axes.plot((time_axes[i][0], time_axes[i][-1]), (self.f_infinities[i], self.f_infinities[i]), '--', label="f_inf")
axes.plot((time_axes[i][0], time_axes[i][-1]), (self.f_baselines[i], self.f_baselines[i]), label="f_base")
axes.set_title(str(self.stimulus_value[i]))
plt.legend()