print medians of percent errors
This commit is contained in:
parent
2f76cefd3c
commit
d100524e84
29
analysis.py
29
analysis.py
@ -42,6 +42,19 @@ def main():
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def get_fit_info(folder):
|
||||||
|
fits_info = {}
|
||||||
|
|
||||||
|
for item in os.listdir(folder):
|
||||||
|
cell_folder = os.path.join(folder, item)
|
||||||
|
|
||||||
|
results = get_best_fit(cell_folder, use_comparable_error=True)
|
||||||
|
cell_behaviour, model_behaviour = results.get_behaviour_values()
|
||||||
|
fits_info[item] = [results.get_final_parameters(), model_behaviour, cell_behaviour]
|
||||||
|
|
||||||
|
return fits_info
|
||||||
|
|
||||||
|
|
||||||
def calculate_percent_errors(fits_info):
|
def calculate_percent_errors(fits_info):
|
||||||
errors = {}
|
errors = {}
|
||||||
|
|
||||||
@ -129,19 +142,6 @@ def parameter_correlations(fits_info):
|
|||||||
return labels, corr_values, corrected_p_values
|
return labels, corr_values, corrected_p_values
|
||||||
|
|
||||||
|
|
||||||
def get_fit_info(folder):
|
|
||||||
fits_info = {}
|
|
||||||
|
|
||||||
for item in os.listdir(folder):
|
|
||||||
cell_folder = os.path.join(folder, item)
|
|
||||||
|
|
||||||
results = get_best_fit(cell_folder)
|
|
||||||
cell_behaviour, model_behaviour = results.get_behaviour_values()
|
|
||||||
fits_info[item] = [results.get_final_parameters(), model_behaviour, cell_behaviour]
|
|
||||||
|
|
||||||
return fits_info
|
|
||||||
|
|
||||||
|
|
||||||
def create_correlation_plot(labels, correlations, p_values):
|
def create_correlation_plot(labels, correlations, p_values):
|
||||||
|
|
||||||
cleaned_cors = np.zeros(correlations.shape)
|
cleaned_cors = np.zeros(correlations.shape)
|
||||||
@ -181,7 +181,8 @@ def create_correlation_plot(labels, correlations, p_values):
|
|||||||
def create_boxplots(errors):
|
def create_boxplots(errors):
|
||||||
|
|
||||||
labels = ["{}_n:{}".format(k, len(errors[k])) for k in sorted(errors.keys())]
|
labels = ["{}_n:{}".format(k, len(errors[k])) for k in sorted(errors.keys())]
|
||||||
|
for k in sorted(errors.keys()):
|
||||||
|
print("{}: median %-error: {:.2f}".format(k, np.median(errors[k])))
|
||||||
y_values = [errors[k] for k in sorted(errors.keys())]
|
y_values = [errors[k] for k in sorted(errors.keys())]
|
||||||
|
|
||||||
plt.boxplot(y_values)
|
plt.boxplot(y_values)
|
||||||
|
Loading…
Reference in New Issue
Block a user