code clean up

This commit is contained in:
a.ott 2020-07-28 10:54:02 +02:00
parent 90ccb4459d
commit c5b72bec26
3 changed files with 28 additions and 272 deletions

140
Fitter.py
View File

@ -16,13 +16,9 @@ import matplotlib.pyplot as plt
class Fitter:
def __init__(self, params=None):
if params is None:
self.base_model = LifacNoiseModel({"step_size": 0.00005})
else:
self.base_model = LifacNoiseModel(params)
if "step_size" not in params:
self.base_model.set_variable("step_size", 0.00005)
def __init__(self):
self.base_model = LifacNoiseModel({"step_size": 0.00005})
self.best_parameters_found = []
self.smallest_error = np.inf
@ -57,8 +53,6 @@ class Fitter:
self.errors = []
# self.tau_a = 0
# counts how often the cost_function was called
self.counter = 0
@ -115,7 +109,7 @@ class Fitter:
self.set_data_reference_values(data)
return fit_routine_func(start_parameters)
def fit_routine_1(self, start_parameters):
def fit_routine(self, start_parameters, error_weights=None):
self.counter = 0
# fit only v_offset, mem_tau, input_scaling, dend_tau
@ -125,8 +119,11 @@ class Fitter:
initial_simplex = create_init_simples(x0, search_scale=3)
# error_list = [error_bf, error_vs, error_sc, error_cv, error_bursty,
# error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight, error_f0_curve]
error_weights = (1, 2, 2, 2, 2, 1, 1, 1, 0, 1)
# error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope_at_straight, error_f0_curve]
if error_weights is None:
error_weights = (1, 2, 2, 2, 2, 1, 1, 1, 0, 1)
fmin = minimize(fun=self.cost_function_all,
args=(error_weights,), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 600, "maxiter": 400})
@ -167,125 +164,6 @@ class Fitter:
self.best_parameters_found = X
return sum(error_list)
def cost_function_without_ref_period(self, X, error_weights=None):
self.base_model.set_variable("mem_tau", X[0])
self.base_model.set_variable("noise_strength", X[1])
self.base_model.set_variable("input_scaling", X[2])
self.base_model.set_variable("tau_a", X[3])
self.base_model.set_variable("delta_a", X[4])
self.base_model.set_variable("dend_tau", X[5])
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_all_without_noise(self, X, error_weights=None):
self.base_model.set_variable("mem_tau", X[0])
self.base_model.set_variable("input_scaling", X[1])
self.base_model.set_variable("tau_a", X[2])
self.base_model.set_variable("delta_a", X[3])
self.base_model.set_variable("dend_tau", X[4])
self.base_model.set_variable("noise_strength", 0)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_only_adaption(self, X, error_weights=None):
self.base_model.set_variable("mem_tau", X[0])
self.base_model.set_variable("input_scaling", X[1])
self.base_model.set_variable("delta_a", X[2])
self.base_model.set_variable("dend_tau", X[3])
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = self.base_model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
self.base_model.set_variable("v_offset", v_offset)
# [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_with_fixed_adaption_tau(self, X, tau_a, error_weights=None):
# set model parameters:
model = self.base_model
model.set_variable("mem_tau", X[0])
model.set_variable("noise_strength", X[1])
model.set_variable("input_scaling", X[2])
model.set_variable("delta_a", X[3])
model.set_variable("dend_tau", X[4])
model.set_variable("tau_a", tau_a)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
model.set_variable("v_offset", v_offset)
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_with_fixed_adaption_with_dend_tau_no_noise(self, X, tau_a, delta_a, error_weights=None):
# set model parameters:
model = self.base_model
model.set_variable("mem_tau", X[0])
model.set_variable("input_scaling", X[1])
model.set_variable("dend_tau", X[2])
model.set_variable("tau_a", tau_a)
model.set_variable("delta_a", delta_a)
model.set_variable("noise_strength", 0)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
model.set_variable("v_offset", v_offset)
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def cost_function_with_fixed_adaption_with_dend_tau(self, X, tau_a, delta_a, error_weights=None):
# set model parameters:
model = self.base_model
model.set_variable("mem_tau", X[0])
model.set_variable("noise_strength", X[1])
model.set_variable("input_scaling", X[2])
model.set_variable("dend_tau", X[3])
model.set_variable("tau_a", tau_a)
model.set_variable("delta_a", delta_a)
base_stimulus = SinusoidalStepStimulus(self.eod_freq, 0)
# find right v-offset
test_model = model.get_model_copy()
test_model.set_variable("noise_strength", 0)
v_offset = test_model.find_v_offset(self.baseline_freq, base_stimulus)
model.set_variable("v_offset", v_offset)
error_list = self.calculate_errors(error_weights)
return sum(error_list)
def calculate_errors(self, error_weights=None, model=None):
if model is None:
model = self.base_model

View File

@ -1,6 +1,6 @@
from models.LIFACnoise import LifacNoiseModel
from CellData import icelldata_of_dir, CellData
from CellData import CellData
from Baseline import get_baseline_class
from FiCurve import get_fi_curve_class
from Fitter import Fitter
@ -8,15 +8,16 @@ from ModelFit import ModelFit
import time
import os
import copy
import argparse
import numpy as np
import multiprocessing as mp
SAVE_PATH_PREFIX = ""
FIT_ROUTINE = ""
SAVE_DIRECTORY = "./results/invivo_results/"
SAVE_DIRECTORY_BEST = "./results/invivo_best/"
# [bf, vs, sc, cv, bursty, f_inf, f_inf_slope, f_zero, f_zero_slope, f0_curve]
ERROR_WEIGHTS = (0, 2, 2, 2, 2, 1, 1, 1, 0, 1)
def main():
@ -43,28 +44,28 @@ def test_single_cell(path):
for i, p in enumerate(start_parameters):
fitter = Fitter()
fitter.set_data_reference_values(cell_data)
fmin, res_par = fitter.fit_routine_1(p)
fmin, res_par = fitter.fit_routine(p, ERROR_WEIGHTS)
cell_path = os.path.basename(cell_data.get_data_path())
cell_path = os.path.split(cell_data.get_data_path())[-1]
error = fitter.calculate_errors(model=LifacNoiseModel(res_par))
save_path = "results/invivo_bursty_results/" + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(i, sum(error))
save_path = SAVE_DIRECTORY + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(i, sum(error))
save_fitting_run_info(cell_data, res_par, p, plot=True, save_path=save_path)
print("Done with start parameters {}".format(str(i)))
def fit_cell_base(parameters):
# parameter = (cell_data, start_parameter_index, start_parameter, results_base_folder)
# parameter = (cell_data, start_parameter_index, start_parameter)
time1 = time.time()
fitter = Fitter()
fitter.set_data_reference_values(parameters[0])
fmin, res_par = fitter.fit_routine_1(parameters[2])
fmin, res_par = fitter.fit_routine(parameters[2], ERROR_WEIGHTS)
cell_data = parameters[0]
cell_path = os.path.split(cell_data.get_data_path())[-1]
error = fitter.calculate_errors(model=LifacNoiseModel(res_par))
save_path = parameters[3] + "/" + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(parameters[1], sum(error))
save_path = SAVE_DIRECTORY + "/" + cell_path + "/start_parameter_{:}_err_{:.2f}/".format(parameters[1], sum(error))
save_fitting_run_info(parameters[0], res_par, parameters[2], plot=True, save_path=save_path)
time2 = time.time()
@ -77,15 +78,15 @@ def fit_cell_base(parameters):
def fit_cell_parallel(cell_data, start_parameters):
cell_path = os.path.basename(cell_data.get_data_path())
save_directory = "./results/invivo_results/"
save_path_cell = os.path.join(save_directory, cell_data.get_cell_name())
save_path_cell = os.path.join(SAVE_DIRECTORY, cell_data.get_cell_name())
print(cell_path)
core_count = mp.cpu_count()
pool = mp.Pool(core_count - 1)
parameters = []
for i, p in enumerate(start_parameters):
parameters.append((cell_data, i, p, save_directory))
parameters.append((cell_data, i, p))
time1 = time.time()
pool.map(fit_cell_base, parameters)
@ -94,6 +95,10 @@ def fit_cell_parallel(cell_data, start_parameters):
del pool
del cell_data
save_master_plot(save_path_cell)
def save_master_plot(save_path_cell):
best_fit = None
min_err = np.inf
for fit in os.listdir(save_path_cell):
@ -102,7 +107,7 @@ def fit_cell_parallel(cell_data, start_parameters):
min_err = cur_fit.comparable_error()
best_fit = cur_fit
best_fit.generate_master_plot("./results/invivo_best/")
best_fit.generate_master_plot(SAVE_DIRECTORY_BEST)
def iget_start_parameters():

View File

@ -1,127 +0,0 @@
def fit_routine_1(self, cell_data=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_1_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, noise_strength, input_scaling
x0 = np.array([0.02, 0.03, 70])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 1, 1, 1, 0, 0)
fmin_step1 = minimize(fun=self.cost_function_with_fixed_adaption_tau, args=(self.tau_a, self.delta_a, error_weights),
x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters_step1 = self.base_model.get_parameters()
if cell_data is not None:
print("##### After step 1: (fixed adaption)")
print_comparision_cell_model(cell_data, res_parameters_step1)
self.counter = 0
x0 = np.array([res_parameters_step1["mem_tau"], res_parameters_step1["noise_strength"],
res_parameters_step1["input_scaling"], res_parameters_step1["tau_a"],
res_parameters_step1["delta_a"]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 1, 1, 1, 2, 4)
fmin_step2 = minimize(fun=self.cost_function_all, args=(error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters_step2 = self.base_model.get_parameters()
if cell_data is not None:
print("##### After step 2: (Everything)")
# print_comparision_cell_model(cell_data, res_parameters_step2)
return fmin_step2, res_parameters_step2
def fit_routine_2(self, cell_data=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_2_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, noise_strength, input_scaling
x0 = np.array([0.02, 0.03, 70])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 5, 1, 2, 0, 0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption_tau,
args=(self.tau_a, self.delta_a, error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters = self.base_model.get_parameters()
return fmin, res_parameters
def fit_routine_3(self, cell_data=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_3_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, noise_strength, input_scaling, dend_tau
x0 = np.array([0.02, 0.03, 70, 0.001])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (1, 1, 5, 1, 2, 0, 0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption_with_dend_tau,
args=(self.tau_a, self.delta_a, error_weights), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex})
res_parameters = self.base_model.get_parameters()
return fmin, res_parameters
def fit_routine_4(self, cell_data=None, start_parameters=None):
global SAVE_PATH_PREFIX
SAVE_PATH_PREFIX = "fit_routine_4_"
# errors: [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope]
self.counter = 0
# fit only v_offset, mem_tau, input_scaling, dend_tau
if start_parameters is None:
x0 = np.array([0.02, 70, 0.001])
else:
x0 = np.array([start_parameters["mem_tau"], start_parameters["noise_strength"],
start_parameters["input_scaling"], start_parameters["dend_tau"]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (0, 5, 15, 1, 2, 1, 0)
fmin = minimize(fun=self.cost_function_with_fixed_adaption_with_dend_tau,
args=(self.tau_a, self.delta_a, error_weights),
x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 400, "maxiter": 400})
res_parameters = fmin.x
# print_comparision_cell_model(cell_data, self.base_model.get_parameters())
self.counter = 0
x0 = np.array([self.tau_a,
self.delta_a, res_parameters[0]])
initial_simplex = create_init_simples(x0, search_scale=2)
error_weights = (0, 1, 1, 2, 2, 4, 2)
fmin = minimize(fun=self.cost_function_only_adaption,
args=(error_weights,), x0=x0, method="Nelder-Mead",
options={"initial_simplex": initial_simplex, "xatol": 0.001})
print(fmin)
print_comparision_cell_model(cell_data, self.base_model.get_parameters())
#
# # self.counter = 0
# # x0 = np.array([res_parameters[0],
# # res_parameters[1], self.tau_a,
# # self.delta_a, res_parameters[2]])
# # initial_simplex = create_init_simples(x0, search_scale=2)
# # error_weights = (1, 3, 1, 2, 1, 3, 2)
# # fmin = minimize(fun=self.cost_function_all_without_noise,
# # args=(error_weights,), x0=x0, method="Nelder-Mead",
# # options={"initial_simplex": initial_simplex, "xatol": 0.001})
# # res_parameters = self.base_model.get_parameters()
# #
# # print_comparision_cell_model(cell_data, self.base_model.get_parameters())
#
# self.counter = 0
# x0 = np.array([res_parameters[0], start_parameters["noise_strength"],
# res_parameters[1], res_parameters[2],
# res_parameters[3], res_parameters[4]])
# initial_simplex = create_init_simples(x0, search_scale=2)
# error_weights = (0, 1, 2, 1, 1, 3, 2)
# fmin = minimize(fun=self.cost_function_all,
# args=(error_weights,), x0=x0, method="Nelder-Mead",
# options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxiter": 599})
# res_parameters = self.base_model.get_parameters()
return fmin, self.base_model.get_parameters()