add behaviour distributions beginning of sensitivity analysis

This commit is contained in:
a.ott 2020-07-17 13:36:06 +02:00
parent 600cd41dd2
commit b9f15827dd

View File

@ -6,6 +6,10 @@ import matplotlib.pyplot as plt
from scipy.stats import pearsonr
from ModelFit import get_best_fit
from Baseline import BaselineModel
from FiCurve import FICurveModel
from CellData import CellData
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
def main():
@ -19,19 +23,20 @@ def main():
# print("Argument dir is not a directory.")
# parser.print_usage()
# exit(0)
# sensitivity_analysis(dir_path, max_models=2)
fits_info = get_fit_info(dir_path)
# errors = calculate_percent_errors(fits_info)
# create_boxplots(errors)
# labels, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False)
# create_correlation_plot(labels, corr_values, corrected_p_values)
errors = calculate_percent_errors(fits_info)
create_boxplots(errors)
labels, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False)
create_correlation_plot(labels, corr_values, corrected_p_values)
# labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
# create_correlation_plot(labels, corr_values, corrected_p_values)
labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
create_correlation_plot(labels, corr_values, corrected_p_values)
create_parameter_distributions(get_parameter_values(fits_info))
cell_b, model_b = get_behaviour_values(fits_info)
create_behaviour_distributions(cell_b, model_b)
pass
@ -183,8 +188,6 @@ def create_boxplots(errors):
plt.show()
plt.close()
pass
def create_parameter_distributions(par_values):
@ -209,6 +212,98 @@ def create_parameter_distributions(par_values):
def create_behaviour_distributions(cell_b_values, model_b_values):
fig, axes = plt.subplots(4, 2)
labels = sorted(cell_b_values.keys())
axes_flat = axes.flatten()
for i, l in enumerate(labels):
min_v = min(min(cell_b_values[l]), min(model_b_values[l])) * 0.95
max_v = max(max(cell_b_values[l]), max(model_b_values[l])) * 1.05
limit = 50000
if max_v > limit:
print("For {} the max value was limited to {}, {} values were excluded!".format(l, limit, np.sum(np.array(cell_b_values[l]) > limit)))
max_v = limit
step = (max_v - min_v) / 15
bins = np.arange(min_v, max_v + step, step)
axes_flat[i].hist(cell_b_values[l], bins=bins, alpha=0.5)
axes_flat[i].hist(model_b_values[l], bins=bins, alpha=0.5)
axes_flat[i].set_title(l)
plt.tight_layout()
plt.show()
plt.close()
pass
def sensitivity_analysis(dir_path, par_range=(0.5, 1.6, 0.1), contrast_range=(-0.3, 0.4, 0.1), parameters=None, behaviours=None, max_models=None):
models = []
eods = []
base_freqs = []
count = 0
for item in sorted(os.listdir(dir_path)):
count += 1
if max_models is not None and count > max_models:
break
cell_folder = os.path.join(dir_path, item)
results = get_best_fit(cell_folder)
models.append(results.get_model())
eods.append(CellData(results.get_cell_path()).get_eod_frequency())
cell, model = results.get_behaviour_values()
base_freqs.append(cell["baseline_frequency"])
if parameters is None:
parameters = ["input_scaling", "delta_a", "mem_tau", "noise_strength",
"refractory_period", "tau_a", "dend_tau"]
if behaviours is None:
behaviours = ["burstiness", "coefficient_of_variation", "serial_correlation",
"vector_strength", "f_inf_slope", "f_zero_slope", "f_zero_middle"]
model_behaviour_responses = []
contrasts = np.arange(contrast_range[0], contrast_range[1], contrast_range[2])
factors = np.arange(par_range[0], par_range[1], par_range[2])
for model, eod, base_freq in zip(models, eods, base_freqs):
par_responses = {}
for par in parameters:
par_responses[par] = {}
for b in behaviours:
par_responses[par][b] = np.zeros(len(factors))
for i, factor in enumerate(factors):
model_copy = model.get_model_copy()
model_copy.set_variable(par, model.get_parameters()[par] * factor)
print("{} at {}, ({} of {})".format(par, model.get_parameters()[par] * factor, i+1, len(factors)))
base_stimulus = SinusoidalStepStimulus(eod, 0)
v_offset = model_copy.find_v_offset(base_freq, base_stimulus)
model_copy.set_variable("v_offset", v_offset)
baseline = BaselineModel(model_copy, eod, trials=3)
print(baseline.get_baseline_frequency())
if "burstiness" in behaviours:
par_responses[par]["burstiness"][i] = baseline.get_burstiness()
if "coefficient_of_variation" in behaviours:
par_responses[par]["coefficient_of_variation"][i] = baseline.get_coefficient_of_variation()
if "serial_correlation" in behaviours:
par_responses[par]["serial_correlation"][i] = baseline.get_serial_correlation(1)[0]
if "vector_strength" in behaviours:
par_responses[par]["vector_strength"][i] = baseline.get_vector_strength()
fi_curve = FICurveModel(model_copy, contrasts, eod, trials=10)
if "f_inf_slope" in behaviours:
par_responses[par]["f_inf_slope"][i] = fi_curve.get_f_inf_slope()
if "f_zero_slope" in behaviours:
par_responses[par]["f_zero_slope"][i] = fi_curve.get_f_zero_fit_slope_at_straight()
if "f_zero_middle" in behaviours:
par_responses[par]["f_zero_middle"][i] = fi_curve.f_zero_fit[3]
model_behaviour_responses.append(par_responses)
pass