add behaviour distributions beginning of sensitivity analysis
This commit is contained in:
parent
600cd41dd2
commit
b9f15827dd
115
analysis.py
115
analysis.py
@ -6,6 +6,10 @@ import matplotlib.pyplot as plt
|
|||||||
from scipy.stats import pearsonr
|
from scipy.stats import pearsonr
|
||||||
|
|
||||||
from ModelFit import get_best_fit
|
from ModelFit import get_best_fit
|
||||||
|
from Baseline import BaselineModel
|
||||||
|
from FiCurve import FICurveModel
|
||||||
|
from CellData import CellData
|
||||||
|
from stimuli.SinusoidalStepStimulus import SinusoidalStepStimulus
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
@ -19,19 +23,20 @@ def main():
|
|||||||
# print("Argument dir is not a directory.")
|
# print("Argument dir is not a directory.")
|
||||||
# parser.print_usage()
|
# parser.print_usage()
|
||||||
# exit(0)
|
# exit(0)
|
||||||
|
# sensitivity_analysis(dir_path, max_models=2)
|
||||||
fits_info = get_fit_info(dir_path)
|
fits_info = get_fit_info(dir_path)
|
||||||
|
|
||||||
# errors = calculate_percent_errors(fits_info)
|
errors = calculate_percent_errors(fits_info)
|
||||||
# create_boxplots(errors)
|
create_boxplots(errors)
|
||||||
# labels, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False)
|
labels, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False)
|
||||||
# create_correlation_plot(labels, corr_values, corrected_p_values)
|
create_correlation_plot(labels, corr_values, corrected_p_values)
|
||||||
|
|
||||||
# labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
|
labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
|
||||||
# create_correlation_plot(labels, corr_values, corrected_p_values)
|
create_correlation_plot(labels, corr_values, corrected_p_values)
|
||||||
|
|
||||||
create_parameter_distributions(get_parameter_values(fits_info))
|
create_parameter_distributions(get_parameter_values(fits_info))
|
||||||
|
cell_b, model_b = get_behaviour_values(fits_info)
|
||||||
|
create_behaviour_distributions(cell_b, model_b)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
@ -183,8 +188,6 @@ def create_boxplots(errors):
|
|||||||
plt.show()
|
plt.show()
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
def create_parameter_distributions(par_values):
|
def create_parameter_distributions(par_values):
|
||||||
|
|
||||||
@ -209,6 +212,98 @@ def create_parameter_distributions(par_values):
|
|||||||
|
|
||||||
|
|
||||||
def create_behaviour_distributions(cell_b_values, model_b_values):
|
def create_behaviour_distributions(cell_b_values, model_b_values):
|
||||||
|
fig, axes = plt.subplots(4, 2)
|
||||||
|
|
||||||
|
labels = sorted(cell_b_values.keys())
|
||||||
|
axes_flat = axes.flatten()
|
||||||
|
for i, l in enumerate(labels):
|
||||||
|
min_v = min(min(cell_b_values[l]), min(model_b_values[l])) * 0.95
|
||||||
|
max_v = max(max(cell_b_values[l]), max(model_b_values[l])) * 1.05
|
||||||
|
limit = 50000
|
||||||
|
if max_v > limit:
|
||||||
|
print("For {} the max value was limited to {}, {} values were excluded!".format(l, limit, np.sum(np.array(cell_b_values[l]) > limit)))
|
||||||
|
max_v = limit
|
||||||
|
step = (max_v - min_v) / 15
|
||||||
|
bins = np.arange(min_v, max_v + step, step)
|
||||||
|
axes_flat[i].hist(cell_b_values[l], bins=bins, alpha=0.5)
|
||||||
|
axes_flat[i].hist(model_b_values[l], bins=bins, alpha=0.5)
|
||||||
|
axes_flat[i].set_title(l)
|
||||||
|
|
||||||
|
plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def sensitivity_analysis(dir_path, par_range=(0.5, 1.6, 0.1), contrast_range=(-0.3, 0.4, 0.1), parameters=None, behaviours=None, max_models=None):
|
||||||
|
models = []
|
||||||
|
eods = []
|
||||||
|
base_freqs = []
|
||||||
|
|
||||||
|
count = 0
|
||||||
|
for item in sorted(os.listdir(dir_path)):
|
||||||
|
count += 1
|
||||||
|
if max_models is not None and count > max_models:
|
||||||
|
break
|
||||||
|
cell_folder = os.path.join(dir_path, item)
|
||||||
|
|
||||||
|
results = get_best_fit(cell_folder)
|
||||||
|
|
||||||
|
models.append(results.get_model())
|
||||||
|
eods.append(CellData(results.get_cell_path()).get_eod_frequency())
|
||||||
|
cell, model = results.get_behaviour_values()
|
||||||
|
base_freqs.append(cell["baseline_frequency"])
|
||||||
|
|
||||||
|
if parameters is None:
|
||||||
|
parameters = ["input_scaling", "delta_a", "mem_tau", "noise_strength",
|
||||||
|
"refractory_period", "tau_a", "dend_tau"]
|
||||||
|
|
||||||
|
if behaviours is None:
|
||||||
|
behaviours = ["burstiness", "coefficient_of_variation", "serial_correlation",
|
||||||
|
"vector_strength", "f_inf_slope", "f_zero_slope", "f_zero_middle"]
|
||||||
|
|
||||||
|
model_behaviour_responses = []
|
||||||
|
|
||||||
|
contrasts = np.arange(contrast_range[0], contrast_range[1], contrast_range[2])
|
||||||
|
factors = np.arange(par_range[0], par_range[1], par_range[2])
|
||||||
|
for model, eod, base_freq in zip(models, eods, base_freqs):
|
||||||
|
par_responses = {}
|
||||||
|
for par in parameters:
|
||||||
|
par_responses[par] = {}
|
||||||
|
for b in behaviours:
|
||||||
|
par_responses[par][b] = np.zeros(len(factors))
|
||||||
|
for i, factor in enumerate(factors):
|
||||||
|
|
||||||
|
model_copy = model.get_model_copy()
|
||||||
|
model_copy.set_variable(par, model.get_parameters()[par] * factor)
|
||||||
|
print("{} at {}, ({} of {})".format(par, model.get_parameters()[par] * factor, i+1, len(factors)))
|
||||||
|
base_stimulus = SinusoidalStepStimulus(eod, 0)
|
||||||
|
v_offset = model_copy.find_v_offset(base_freq, base_stimulus)
|
||||||
|
model_copy.set_variable("v_offset", v_offset)
|
||||||
|
|
||||||
|
baseline = BaselineModel(model_copy, eod, trials=3)
|
||||||
|
print(baseline.get_baseline_frequency())
|
||||||
|
if "burstiness" in behaviours:
|
||||||
|
par_responses[par]["burstiness"][i] = baseline.get_burstiness()
|
||||||
|
if "coefficient_of_variation" in behaviours:
|
||||||
|
par_responses[par]["coefficient_of_variation"][i] = baseline.get_coefficient_of_variation()
|
||||||
|
if "serial_correlation" in behaviours:
|
||||||
|
par_responses[par]["serial_correlation"][i] = baseline.get_serial_correlation(1)[0]
|
||||||
|
if "vector_strength" in behaviours:
|
||||||
|
par_responses[par]["vector_strength"][i] = baseline.get_vector_strength()
|
||||||
|
|
||||||
|
fi_curve = FICurveModel(model_copy, contrasts, eod, trials=10)
|
||||||
|
|
||||||
|
if "f_inf_slope" in behaviours:
|
||||||
|
par_responses[par]["f_inf_slope"][i] = fi_curve.get_f_inf_slope()
|
||||||
|
if "f_zero_slope" in behaviours:
|
||||||
|
par_responses[par]["f_zero_slope"][i] = fi_curve.get_f_zero_fit_slope_at_straight()
|
||||||
|
if "f_zero_middle" in behaviours:
|
||||||
|
par_responses[par]["f_zero_middle"][i] = fi_curve.f_zero_fit[3]
|
||||||
|
|
||||||
|
model_behaviour_responses.append(par_responses)
|
||||||
|
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user