improve internal stimulus handling
This commit is contained in:
parent
251ca4f2ef
commit
af2172c81b
@ -1,8 +1,6 @@
|
||||
from stimuli.AbstractStimulus import AbstractStimulus
|
||||
import numpy as np
|
||||
from numba import jit, njit
|
||||
import time
|
||||
from warnings import warn
|
||||
|
||||
|
||||
class SinusAmplitudeModulationStimulus(AbstractStimulus):
|
||||
@ -25,10 +23,10 @@ class SinusAmplitudeModulationStimulus(AbstractStimulus):
|
||||
|
||||
return self.amplitude * am * carrier
|
||||
|
||||
def get_stimulus_start_ms(self):
|
||||
def get_stimulus_start_s(self):
|
||||
return self.start_time
|
||||
|
||||
def get_stimulus_duration_ms(self):
|
||||
def get_stimulus_duration_s(self):
|
||||
return self.duration
|
||||
|
||||
def get_amplitude(self):
|
||||
@ -42,24 +40,25 @@ class SinusAmplitudeModulationStimulus(AbstractStimulus):
|
||||
start_time = self.start_time
|
||||
duration = self.duration
|
||||
|
||||
values = convert_to_array(carrier, amp, mod_freq, contrast, start_time, duration, time_start, total_time, step_size)
|
||||
values = convert_to_array(carrier, amp, mod_freq, contrast, start_time, duration, time_start, total_time, step_size/1000)
|
||||
|
||||
return values
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_time, duration, time_start, total_time, step_size):
|
||||
#@jit(nopython=True) # makes it slower?
|
||||
def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_time, duration, time_start, total_time, step_size_s):
|
||||
# if the whole stimulus time has the amplitude modulation just built it at once;
|
||||
if time_start >= start_time and start_time+duration < time_start+total_time:
|
||||
carrier = np.sin(2 * np.pi * carrier_freq * np.arange(start_time, total_time-start_time, step_size/1000))
|
||||
modulation = 1 + contrast * np.sin(2 * np.pi * modulation_freq * np.arange(start_time, total_time-start_time, step_size/1000))
|
||||
carrier = np.sin(2 * np.pi * carrier_freq * np.arange(start_time, total_time - start_time, step_size_s))
|
||||
modulation = 1 + contrast * np.sin(2 * np.pi * modulation_freq * np.arange(start_time, total_time - start_time, step_size_s))
|
||||
values = amplitude * carrier * modulation
|
||||
return values
|
||||
|
||||
# if it is split into parts with and without amplitude modulation built it in parts:
|
||||
values = np.array([])
|
||||
values = np.empty(1)
|
||||
|
||||
if time_start < start_time:
|
||||
carrier_before_am = np.sin(2 * np.pi * carrier_freq * np.arange(time_start, start_time, step_size / 1000))
|
||||
carrier_before_am = np.sin(2 * np.pi * carrier_freq * np.arange(time_start, start_time, step_size_s))
|
||||
values = np.concatenate((values, amplitude * carrier_before_am))
|
||||
|
||||
# there is at least a second part of the stimulus that contains the amplitude:
|
||||
@ -68,14 +67,14 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t
|
||||
if duration is np.inf:
|
||||
|
||||
carrier_during_am = np.sin(
|
||||
2 * np.pi * carrier_freq * np.arange(start_time, time_start+total_time, step_size / 1000))
|
||||
2 * np.pi * carrier_freq * np.arange(start_time, time_start + total_time, step_size_s))
|
||||
am = 1 + contrast * np.sin(
|
||||
2 * np.pi * modulation_freq * np.arange(start_time, time_start+total_time, step_size / 1000))
|
||||
2 * np.pi * modulation_freq * np.arange(start_time, time_start + total_time, step_size_s))
|
||||
else:
|
||||
carrier_during_am = np.sin(
|
||||
2 * np.pi * carrier_freq * np.arange(start_time, start_time + duration, step_size / 1000))
|
||||
2 * np.pi * carrier_freq * np.arange(start_time, start_time + duration, step_size_s))
|
||||
am = 1 + contrast * np.sin(
|
||||
2 * np.pi * modulation_freq * np.arange(start_time, start_time + duration, step_size / 1000))
|
||||
2 * np.pi * modulation_freq * np.arange(start_time, start_time + duration, step_size_s))
|
||||
values = np.concatenate((values, amplitude * am * carrier_during_am))
|
||||
|
||||
else:
|
||||
@ -83,7 +82,7 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t
|
||||
print("Given stimulus time parameters (start, total) result in no part of it containing the amplitude modulation!")
|
||||
|
||||
if time_start+total_time > start_time+duration:
|
||||
carrier_after_am = np.sin(2 * np.pi * carrier_freq * np.arange(start_time+duration, time_start+total_time, step_size/1000))
|
||||
carrier_after_am = np.sin(2 * np.pi * carrier_freq * np.arange(start_time + duration, time_start + total_time, step_size_s))
|
||||
values = np.concatenate((values, amplitude*carrier_after_am))
|
||||
|
||||
return values
|
||||
|
Loading…
Reference in New Issue
Block a user