diff --git a/Fitter.py b/Fitter.py index f13d19e..4870170 100644 --- a/Fitter.py +++ b/Fitter.py @@ -9,6 +9,7 @@ import numpy as np from warnings import warn from scipy.optimize import minimize import time +from helperFunctions import plot_errors import matplotlib.pyplot as plt @@ -53,6 +54,7 @@ class Fitter: self.f_zero_curve_freq = np.array([]) self.f_zero_curve_time = np.array([]) + self.errors = [] # self.tau_a = 0 @@ -125,51 +127,9 @@ class Fitter: error_weights = (0, 2, 2, 2, 1, 1, 1, 1, 0, 1) fmin = minimize(fun=self.cost_function_all, args=(error_weights,), x0=x0, method="Nelder-Mead", - options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 600, "maxiter": 1200}) + options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 600, "maxiter": 400}) - return fmin, self.base_model.get_parameters() - - def fit_routine_const_ref_period(self, start_parameters): - self.counter = 0 - # fit only v_offset, mem_tau, input_scaling, dend_tau - - x0 = np.array([start_parameters["mem_tau"], start_parameters["noise_strength"], - start_parameters["input_scaling"], self.tau_a, start_parameters["delta_a"], - start_parameters["dend_tau"], start_parameters["refractory_period"]]) - initial_simplex = create_init_simples(x0, search_scale=2) - self.base_model.set_variable("refractory_period", start_parameters["refractory_period"]) - # error_list = [error_bf, error_vs, error_sc, error_cv, - # error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope] - error_weights = (0, 1, 1, 1, 1, 1, 1, 1, 1) - fmin = minimize(fun=self.cost_function_without_ref_period, - args=(error_weights,), x0=x0, method="Nelder-Mead", - options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 200, "maxiter": 400}) - - return fmin, self.base_model.get_parameters() - - # similar results to fit routine 1 - def fit_routine_2(self, start_parameters): - self.counter = 0 - - x0 = np.array([start_parameters["mem_tau"], start_parameters["input_scaling"], # mem_tau, input_scaling - start_parameters["delta_a"], start_parameters["dend_tau"]]) # delta_a, dend_tau - initial_simplex = create_init_simples(x0, search_scale=2) - - error_weights = (0, 1, 1, 1, 1, 3, 2, 3, 2) - fmin = minimize(fun=self.cost_function_only_adaption, - args=(error_weights,), x0=x0, method="Nelder-Mead", - options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 100, "maxiter": 400}) - best_pars = fmin.x - x0 = np.array([best_pars[0], start_parameters["noise_strength"], - best_pars[1], self.tau_a, best_pars[2], - best_pars[3]]) - initial_simplex = create_init_simples(x0, search_scale=2) - # error_list = [error_bf, error_vs, error_sc, error_cv, - # error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope] - error_weights = (0, 2, 2, 2, 2, 1, 1, 1, 1) - fmin = minimize(fun=self.cost_function_all, - args=(error_weights,), x0=x0, method="Nelder-Mead", - options={"initial_simplex": initial_simplex, "xatol": 0.001, "maxfev": 100, "maxiter": 400}) + plot_errors(self.errors) return fmin, self.base_model.get_parameters() @@ -204,11 +164,11 @@ class Fitter: # [error_bf, error_vs, error_sc, error_f_inf, error_f_inf_slope, error_f_zero, error_f_zero_slope] error_list = self.calculate_errors(error_weights) - print("sum: {:.2f}, ".format(sum(error_list))) + # print("sum: {:.2f}, ".format(sum(error_list))) if sum(error_list) < self.smallest_error: self.smallest_error = sum(error_list) self.best_parameters_found = X - + self.errors.append(error_list) return sum(error_list) def cost_function_without_ref_period(self, X, error_weights=None):